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ABSTRACT

The rapid advances in specialized hardware, capabilities including FPGAs, TPUs,

microsecond network interconnects, RDMA, GPUs, and other technologies have posed

signicant challenges for the traditional monolithic client/server model in efciently man-

aging and scaling resources, both within industry and HPC systems. This challenge has in-

stigated the emergence of a new paradigm known as resource disaggregation, which tackles

the limitations of the monolithic client-server paradigm by enabling independent scaling of

components such as compute, memory, and storage. The disaggregation of resources can

be managed entirely through hardware or software solutions. Resource disaggregation en-

hances resource utilization by ne grained scheduling of hardware resources to support

dynamic workloads efciently and empowers data centers to effectively address varying

computational demands, optimize performance, and curtail operational costs, marking a

pivotal evolution in modern computational infrastructure.

However, software based disaggregation, whether over a single server or across

multiple servers, has placed an increased burden on developers. They are compelled to

continuously adapt to new software stacks and migrate applications accordingly. In some

instances, despite the considerable porting efforts, the outcomes may not justify the in-

vestment. Unfortunately, much of the existing research fails to adequately address the

engineering investment challenge, instead prioritizing new software stacks primarily for

performance gains, albeit often at the expense of developer productivity.

This thesis focuses on improving developer productivity in software disaggregated

environments and advocates that unless a developer has evidence they should not have to

switch to a new software system or OS environment. Even when there is benet for doing

so, software tools should be able to prioritize compatibility by leveraging advancements in

low-level system software stacks like the operating system and compilers.

We found initial evidence on ways to improve developer productivity in software

xiii



disaggregated systems by exploring analytical models backed with emulators to place bounds

on application performance. Our speedup models equip developers with a tool to decide

whether an application would benet from resource disaggregation before actually trying to

use such a system. While analytical models help developers gain insight before adapting to

a new environment, developers may still have to port their applications to achieve high per-

formance. We found out through TrackFM that compilers can enable automatic porting of

applications with high performance, thereby improving developer productivity on memory

disaggregated systems. One of the limitations of TrackFM was that the runtime memory

policies had to be determined at static time for applications, which can lead to performance

overheads for certain applications. We overcome this problem by building CARDS, a sys-

tem that determines far memory policies proactively on software disaggregated systems

by combining compiler and runtime information for each data structure within an applica-

tion automatically. CARDS provides developers with a new alternative that determines far

memory polices dynamically instead of using a complex proling based system to improve

policies. CARDS is built on top of TrackFM and overcomes the limitations of static com-

pilers by codesigning compiler analysis with the runtime which enables informed policy

decisions at data structure granularity.

The co-design of modern compiler analysis with runtime systems opens a unique

opportunity to create tools that enhance developer productivity within resource-disaggregated

architectures. We also envision that such codesign can be extremely helpful in emulation

of experimental hardware architectures to provide insights quickly without any application

porting effort. Leveraging my expertise in low-level system software, my thesis aims to ad-

vocate for the integration of automated tools in software disaggregated systems to prioritize

developer productivity in datacenter environments.

xiv
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CHAPTER 1

INTRODUCTION

The rapid advancements in specialized hardware have highlighted the limitations

of the traditional monolithic datacenter server model in efciently managing resources.

This has led to growing interest in resource disaggregation, which aims to overcome the

challenges of the monolithic server model by decoupling resources across servers within

a datacenter. In other words, resource disaggregation separates CPU, storage, and mem-

ory resources, traditionally tied to a single server, into distinct nodes that are managed

independently. This separation can be managed entirely through hardware or software

solutions. Hardware-based disaggregation examples include Intel rack scale disaggrega-

tion [2], Huawei DC [3], dReDBox project [4], Firebox [5], and memory blades [6]. On

the other hand, software-based disaggregation examples include, but are not limited to,

Fastswap, Inniswap, DSM, Intel mOS, IHK/McKernel and TMO [7, 8, 9, 10, 11, 12].

My thesis focuses on software-based disaggregation, which uses software abstrac-

tions such as operating systems (OSes), programming languages and library support to

manage hardware resources efciently. For instance, in a kernel based memory disaggre-

gated system, the swap backend within the operating system is modied to swap pages to

another server, thereby improving memory utilization in datacenters [7, 8, 13, 14]. Another

approach involves splitting the operating system into monitors, each responsible for man-

aging specic resources [15]. Additionally, in high-performance computing (HPC) sys-

tems, a more unconventional method of software disaggregation exists where multiple OS

instances manage CPU and memory resources separately within a single server, enabling

applications to achieve high performance and scalability [10, 11].

Although software-based disaggregation provides exibility, scalability, and relia-

bility, these architectures often demand new build environments, OS modications, appli-

cation changes to efciently use resources, thereby impacting developer productivity. For
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example in order to make use of memory resources efciently in software based mem-

ory disaggregation, AIFM, a library based approach requires application modications [1].

While specialized OSes [15, 13] show potential to use disaggregated resources efciently,

they do require developers to update their build environments and in some cases also mod-

ify their applications [11, 10]. Furthermore, in certain scenarios, the effort required to move

to a new OS or modify applications may not justify the porting effort.

In my thesis, I explore automated tools designed to prioritize developer productivity,

allowing developers to focus entirely on their applications without the burden of porting

efforts required to run on software-based disaggregated architectures. In the following

subsections, I discuss two different types of software-based resource disaggregation and the

challenges developers face when adapting to these systems. Finally, I briey explain how

my research has contributed to improving developer productivity within these architectures.

1.1 Software disaggregation within a single server in HPC systems

A growing number of applications and runtimes place intense demands on systems

which push the traditional hardware and software stack to its limits. The needs of these

applications often cannot be met by general-purpose operating systems (GPOSes), either

owing to overheads caused by mismatched abstractions [16, 17], system interference and

jitter from “OS noise” [18, 19], or unnecessary complexity introduced by a general-purpose

OS design [20].

While specialized OSes (SOSes) have been shown to increase performance, in some

cases signicantly [21, 22, 23, 16] one of the biggest challenges facing their widespread

adoption is their non-conformance to POSIX or the Linux ABI. This means that for users

to take advantage of a new OS, developers must rst port applications to work with the

kernel’s system interface.

One approach to ameliorate this situation involves delegation of a portion of the
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Figure 1.1. High-level architecture of a multi-OS system where the CPU/memory resources
of a single server are disaggregated between multiple operating systems.

system call interface to another OS. This approach, sometimes referred to as a multi-kernel

or co-kernel [24] setup, partitions the machine (either virtually [17, 25, 26] or physi-

cally [24, 27, 28, 10, 11]) such that different OSes control different resources. Usually

this means that a GPOS (such as Linux) acts as the control plane—setting up the execution

environment, launching applications, and handling system services—while an SOS acts as

the data plane or compute plane. The rationale is that the majority of the application’s exe-

cution will be in the compute plane, and any system services unsupported by the SOS will

be delegated to the GPOS via some forwarding mechanism. Multi-kernel systems are an

unconventional form of software resource disaggregation within a single server. Figure 1.1

describes the architecture of software disaggregation within a single server often used in

HPC systems to achieve high performance [29, 30].

Adapting to a new OS environment may require signicant developer effort which

may not always justify the gains from it. While others have presented empirical analysis

of delegation [31], and several multi-OS designs exist [24, 10, 11, 32], there had been

no prior attempt to model these environments analytically. This presents an opportunity,

as “bounds and bottleneck” analysis can provide valuable insight and intuition for novel

computing paradigms. We draw inspiration from prior work such as Amdahl’s law [33]
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and its successors [34, 35] provided keen insight on the limitations of parallel program

performance at a time when parallel systems and algorithms were emerging.

Our work on modelling speedups in multi-kernel systems [36, 37] empowers de-

velopers with an automated tool to gain insight whether their application would benet

from such complex systems, before having to modify their software environments. I will

describe our speedup models in more detail later in Chapter 3.

1.2 Software resource disaggregation across servers in datacenters

Another form of software disaggregation involves extending DRAM on a remote

server connected to the local machine with a high-performance interconnect to fetch ad-

ditional memory from other servers. One example of such a far memory tier is remote

memory, alternatively referred to as disaggregated memory [38]. Remote memory systems

accommodate memory-constrained applications by allowing workloads to scale across ma-

chines rather than requiring overprovisioning using expensive, large-memory hardware.

This reduces ownership costs [39] and mitigates application crashes from unmet memory

demands.

Figure 1.2 is an example of a far memory disaggregated system in datacenters,

where memory is disaggrgeated across servers within datacenters. Software-based remote

memory are generally implemented by two primary techniques: kernel-based and library-

based. The kernel-based approach modies the OS paging subsystem [40, 8, 7], achieving

programmer transparency: the application developer gets the advantages of kernel-based

approaches for free; even unmodied binaries can benet from remote memory. Fastswap

is a notable example that uses a modied Linux swap subsystem to leverage memory on

a remote server using RDMA [7]. The programmer transparency of the kernel-based ap-

proach comes at a cost, however. For example, page fault overheads in the kernel impose a

performance penalty on applications relative to using only local memory [1]. The hardware
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Figure 1.2. High-level architecture of a far memory system where the memory of the local
server is extended to use unused memory from other servers within a datacenter.

page fault cost creates a fundamental limitation on performance.

The library-based approach to far memory is an important alternative, where de-

velopers use modied (or custom) libraries that include data structures designed to lever-

age remote memory, at granularities appropriate for the application, and entirely in user

space. Application-integrated far memory (AIFM) [1] is the exemplar of this approach.

AIFM builds on the Shenango runtime’s [41] high-performance user-level tasking and net-

working to hide remote object fetch latencies using prefetching, concurrent fetch requests,

caching, and automatic memory evacuation. AIFM can thus achieve considerably higher

performance than Fastswap, especially for ne-grained objects. The performance of the

library-based approach trades off for programmer transparency, since the application must

be reimplemented to leverage remote memory.

The tension between transparency and performance in the kernel-based and library-

based approaches creates an opportunity for a third alternative: compiler-based. We argue

that modern compiler analysis and transformation techniques make it possible to simulta-



6

neously achieve programmer transparency and performance. Our work TrackFM [42] is the

rst to show how modern compiler analysis can provide performance without requiring any

application changes in these architectures. TrackFM enhances developer productivity by

automatically transforming code to memory disaggregated architectures, this enables de-

velopers to focus solely on their application and they do not have to worry about modifying

their application. I will describe TrackFM in more detail in Chapter 4.

We discovered that while TrackFM highlights that compiler analysis can be lever-

aged to automatically transform applications and use far memory efciently, The policies

on what objects should be remoted, prefetched and evacuated are determined conserva-

tively. In certain cases when an application has enough local memory much of the instru-

mentation costs of TrackFM can be avoided if policies such as what object are remoted are

determined at runtime instead of compile time. For example in the TrackFM compiler, all

memory objects are assumed to be remoted. This decision is made conservatively as the

TrackFM compiler lacks information at compile time to make the right decisions. Proling

compilers like Mira [43] on the other hand leverage proling to determine the right policies

for remoting, prefetching and evacuation. While proling does help address this limita-

tion for certain applications, it may require several runs of the application to make policy

decisions efciently, and can also be expensive.

We draw inspiration from prior library based approaches [1] that leverage user hints

to identify and annotate remote data structures which enables user runtimes to make policy

decisions dynamically. However, without user hints or proling, the capability to make

far memory policy decisions efciently is challenging in compiler based approaches. First,

source code level information (e.g., custom data structures) is lost during compilation from

source language. The information of data structures and their access patterns are critical

to determine prefetching and eviction policies dynamically in far memory runtimes like

AIFM [1]. Second, the compiler analysis is limited to static information available at com-
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pile time and does not take into account the dynamic behavior of far-memory applications.

For instance, the compiler cannot know at compile time whether an object of a linked list

is local or remote, which restricts the compiler’s ability to make informed policy decisions.

In CARDS, we overcome the rst limitation by leveraging data structure analy-

sis [44, 45] to automatically recover data structures from source code at compile time. We

overcome the second limitation by co-designing the compiler and runtime, i.e., we pass the

compiler identied data structures to the runtime using data structure handles. This enables

the runtime to make policy decisions per data structure dynamically and avoids the need to

make conservative policy decisions at compile time. I will describe CARDS in more detail

in Chapter 5.
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CHAPTER 2

THESIS

Software-based resource disaggregated architectures should prioritize developer pro-

ductivity alongside efcient resource utilization. Leveraging low-level system software

components such as compilers, operating systems, and analytical models can signicantly

enhance productivity within these complex systems. By building automated tools, develop-

ers can focus exclusively on their applications, abstracting away the intricacies of resource

management and optimization in software-based disaggregated environments.
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CHAPTER 3

ANALYTICAL SPEEDUP MODELS TO PREDICT SPEEDUP IN SOFTWARE
DISAGGREGATED SYSTEMS

I describe below our speedup models along with a multi-OS emulator which will

provide insights into application performance in a single server OS disaggregated system

(multi OS) environment without developers having to port their application.1

3.1 Analytical Speedup Model Design

Multi-OS environments are arranged such that compute intensive portions of an

application run atop a specialized OS (compute plane), and system services not supported

by that SOS are delegated to a general-purpose OS (control plane), which handles the

calls and returns the results. There are two primary concerns when considering this setup:

which calls to forward; and how to forward them. The rst concern might depend on the

nature of the calls. For example, if there is no lesystem support in the SOS, system calls

like read(), write(), and open() must be delegated. In HPC environments such

I/O ofoad is often employed to reduce load on the parallel le system (PFS) induced by

concurrent client requests from compute nodes. Instead, lesystem requests are delegated

to an I/O node. In other cases, the choice of which system calls to delegate might hinge on

time and resources available to the OS developer. In the interest of time, he or she might

implement commonly invoked system calls in the SOS to optimize for the critical path, but

choose to delegate those invoked infrequently. Gioiosa et al. showed how this choice can

be guided by empirical analysis [31].

The second concern (regarding the delegation mechanism) depends on the capabil-

ities of the hardware and software stack, and on the use case. For example, modern Linux

kernels allow for ofining a subset of CPU cores which can then be controlled by an SOS.

1The content of this chapter is gathered from published research and is reprinted,
with permission, from [46, 37]
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Figure 3.1. High-level architecture of a multi-OS system leveraging the delegate model.

IHK/McKernel [11], Pisces [24], FusedOS [32], and mOS [10] leverage this feature. In

this case, because the two OS kernels run on the same node, delegation can occur between

an SOS and the GPOS using shared memory. If the SOS and GPOS are running on sepa-

rate nodes, however, delegation must occur over the network, which involves marshalling

arguments and initiating remote procedure calls (RPC) between nodes, unless the system

supports distributed shared memory. Remote delegation is necessary for the I/O ofoading

example mentioned previously. In cases where the machine is partitioned using virtualiza-

tion, as in Libra [26] and Hybrid Virtual Machines [17], delegation may occur either via

VMM-managed shared pages or via explicit hypercalls from guests.

Figure 3.1 shows an environment that supports local system call delegation in a

hexa-core machine. The machine is physically partitioned between a GPOS and SOS such

that they own a subset of the physical resources (memory and processors). In this case,

the GPOS runs on cores 0–2 and the SOS runs on cores 3–5 (the compute cores). Mem-

ory is assumed to be partitioned such that the physical address space is split between them

(6). When an application invokes a system call supported by the SOS (1), the SOS kernel

handles it directly. However, when the application invokes an unsupported system call, it

vectors to a handler in the specialized kernel (2), which communicates with a component
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(3) in the GPOS (such as a kernel module), which elds the original request. In this case,

the communication between the SOS and GPOS is facilitated by a shared page of memory.

This delegation process involves some subtlety, as the context of the calling (delegator)

process must be mirrored by the handling (delegate) component, and the system call han-

dler service might exist in the GPOS kernel or in a user-space process running atop the

GPOS, as in User-level Servers in mOS [10]. After the delegate handles the system call, it

sends back the results to the SOS (4), which then returns the result to the application (5).

While there are technical differences between existing multi-OS systems, they all

share two primary characteristics that we will use in modeling them. The rst is that they

assume some difference in performance when a program runs in the GPOS and in the SOS.

The second is that some delegation or forwarding mechanism exists to allow the two kernels

to communicate.

3.2 The Delegate Speedup Model

We now present two versions of a model which represents the speedup of an ap-

plication in a multi-OS environment. For the following, we assume a single-threaded ap-

plication (more on this in Section 3.5) whose computation portion runs in a specialized

(compute plane) OS, and whose system portion (namely, system calls) runs on a general-

purpose (data plane) OS. Thus, all system calls are initially assumed to be delegated to the

GPOS.

3.2.1 Naı̈ve Model.

We begin by outlining the simplest and most familiar scenario, namely where there

is no system call forwarding. In this scenario, the program is executed entirely on a GPOS.

Let  be the execution time of the program in this environment:

orig = orig ·  + (1 − ) · orig
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Here  is the percentage of the workload related to system calls. This, for example,

could be calculated by dividing the number of instructions executed in the kernel2 by the

total number of instructions retired during the run of the program. Such measures are

commonly available from hardware performance counters, but the source of these terms is

beyond our scope.

Now we consider a scenario wherein we execute the application in an SOS, but

forward all system calls to a GPOS. Let  be the new execution time, and let  be a

constant factor that represents the speedup from running the computational portion of the

workload in the SOS relative to running the same portion in the GPOS. We hereafter refer

to  as the gain factor of the SOS.

new = orig ·  +
orig


· (1 − )

Using the familiar speedup ratio (/), we arrive at the overall speedup (rep-
resented by , where the  corresponds to “naı̈ve”):

 =


 + 1 − 



−1

This intuitive model has power in its simplicity. Consider the case where  ≪ 1.

This corresponds to a workload that spends very little of its time performing system calls

(control plane), and thus spends most of its time computing. We might say that this applica-

tion has very high “operational intensity,” spending more time in user space than in kernel

space. In this case, the application receives a signicant benet3 from the SOS, and the

2This would include transparent system events such as page fault exceptions and
interrupt handling.

3This, for example, might be due to guaranteeing cooperative scheduling or might



13

Figure 3.2. Speedup in a multi-OS environment () given the proportion of time an appli-
cation spends on system calls () and the gain factor () from running in the specialized
OS.

overall speedup equation reduces to . However, to understand how, e.g., an I/O-intensive

application behaves, we observe that as  approaches 1, so does the overall speedup. The

intuition here is that a system-only workload will receive no benet from the SOS, and will

thus spend most of its time in the control plane. It is important to note just how important

 is for this model. Consider that as  tends towards innity, this speedup relation tends to

1
 .

This succinctly captures the bounded speedup of the multi-OS environment, and

echoes the insight provided by Amdahl’s Law. Essentially what this says is that even with

innite improvement of the computational portion of a workload by the specialized OS, the

speedup of the application is bounded by how much it relies on the legacy system interface.

Figure 3.2 depicts how this model behaves as  and  vary. Notice how as  grows smaller,

we reach perfect linear speedup. The gain factor () is the interesting part of this model,

and it very closely resembles the parameter representing parallelism in Amdahl’s Law.

be due to an address space setup amenable to (or tailored to) the application.
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Figure 3.3. Speedup projected by our simple model for SPEC and NAS benchmarks with
varying gain factor ().

Semantically, however, they are quite different. In practice, we do not expect the gain to be

very large (likely < 2), but the interplay between  and  are still signicant for application

performance. We show speedups on the order of 10× here to show the general behavior of

the model.

One can also use this model from the perspective of an OS kernel developer, in

which case it can be used to determine where to focus development efforts. For example,

even if monumental effort is spent improving the computational aspect of a workload (e.g.,

by focusing on developing efcient threading libraries), it might make very little impact if

the kernel will run I/O-intensive applications. This of course echoes the oft-stated design

principle, “optimize for the common case.”

To understand how this model might translate into real application performance, we

rst determined  for a selection of benchmarks both from the SPEC CPU 2017 and NAS

Serial suite, and projected real application speedup given a xed gain () factor.
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Table 3.1. Empirically determined system call portion () for SPEC and NAS benchmarks
(class C).

Benchmark Description 

gcc_linux_k Linux kernel compilation 35.05%

bzip2 bzip2 3.74%

cam4_r Atmospheric modeling 0.107%

deepsjeng_r Deep Sjeng chess engine (tree search) 0.0054%

mcf_r Combinatorial optimization 0.00264%

BT Block Tri-diagonal solver 0.000067%

CG Conjugate Gradient 0.00026%

EP Embarrassingly Parallel 0.000152%

To determine  empirically, we used strace4 and the time command for a ref-

erence run of the individual benchmark. We calculate  by summing the system call times

(measured with strace) spent in the application and computing its ratio to the total exe-

cution time (measured with time).

Furthermore,  may vary for a particular benchmark when its inputs are changed.

Table 3.1 shows the empirically determined values of  and descriptions for each bench-

mark we used. Figure 3.3 shows the results of our experiment. Linux kernel compilation

(gcc in the graph) stresses the system interface the most (due to heavy le I/O), and thus

achieves very little speedup, even with a signicant initial speedup from the SOS, repre-

sented by . The other benchmarks are skewed towards computation, and thus achieve

sub-linear speedup as  increases.

3.2.2 Rened Model.

While our naı̈ve model can be used as an intuitive tool, there are several simplica-

tions that make it unrealistic in terms of predicting performance:

4strace -c -f -w -D
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1. The cost of forwarding system calls is ignored. In the existing model, this means that

we assume all of them are forwarded.

2. Different system calls have different costs (in terms of execution time).

3. A given system call will have different costs for different invocations (in most cases

determined by its arguments). Consider, for example, the read() system call.

4. System calls which are ported to the SOS might have different cost than the original

GPOS version.

5. It is inaccurate to say that the speedup factor () applies uniformly to all non-system

instructions in the program. For example, the SOS environment might have a sim-

plied paging setup (e.g., identity-mapped, 1GB pages) which signicantly reduces

TLB misses for instruction fetches and loads and stores, but integer/oating point

instructions will be unaffected unless they involve memory references.5

6. Setups where there are more than one GPOS and more than one SOS are not consid-

ered.

In this Section, we rene our model by addressing (1), (2), and (3) above. We intend to

rene the model further in future work to account for the remaining simplications.

We rst must capture the fact that different system calls can have different costs ((2)

and (3)). Let S = {1, 2, . . . , } be the set of all system calls invoked during a particular

run (with xed inputs) of program . We introduce a function  : S → R, such that ()
gives the absolute time taken for all invocations of system call  in the GPOS for the run

of program . For example, if one program run contained several invocations of mmap()

5This is unless, of course, the instructions cause an exception or involve addressing
modes that necessitate a memory reference.
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(which is common), () will represent the time taken for all such invocations6 when

run on a general-purpose OS. This function also includes time spent in the kernel due to,

e.g., blocking system calls.

Let represent the absolute time taken by the computational portion of the program

(that is, all instructions not executed in the context of a system call). We can then calculate

the total execution time in the default case, where the program runs entirely in the GPOS

and no system call delegation occurs (represented by ) as follows:

nd =  +
∑
∈S
()

We then must capture the notion of system call delegation. We introduce two func-

tions  : S → R and  : S → {0, 1}. The function  () represents the time required to

forward system calls, dened as:

 () = 2 ()

Here  is a constant that represents the base forwarding cost for all system calls

using a particular forwarding mechanism, and the function  : S → N represents the

number of times system call  is invoked.  is scaled by a factor of two to account for the

round-trip from the SOS to the GPOS. That is, a system call is forwarded from the SOS to

GPOS, executed on the GPOS, and the results are sent back to the SOS, so the forwarding

overhead is incurred twice.  will vary widely depending on the software mechanisms

which implement forwarding and the underlying interconnect over which system calls are

forwarded.7 For example, for delegation over shared memory,  would likely be in the

6That is, the sum of the execution times for all mmap(). invocations.

7Here we make the simplifying assumption that this cost is independent of the system



18

ns to s range For delegation over a network, this number might be closer to several s

or several ms, depending on the network characteristics. Note that delegation over the

network may involve more complex and asymmetric forwarding costs. For example, the

forward trip may involve marshalling system call arguments, and the return trip from the

GPOS might only involve a single integer return value. We do not currently take these

complexities into account in our model.

The second function, () is a boolean predicate function8 which tells us whether

or not a particular system call is delegated:

() =


0, if  is not delegated

1, otherwise

Recall that the program primarily runs in the context of the SOS, and so receives

some performance benet (represented before by the factor ) as a result. Thus, as before,

we only apply  to the computational portion of the workload (). For the system call

portion of the workload, we must differentiate between delegated system calls and local

system calls (those which have corresponding implementations in the SOS). We can repre-

sent the absolute time taken by all local system calls () by introducing another function

′ which captures this notion. We use ′() to represent the time taken for all invocations

of system call  given the custom version of  implemented in the SOS.

local =
∑
∈S

(1 − ())′()

call itself, but this is not strictly true. A forwarding mechanism that uses marshalling (e.g.,
over a network) will incur more forwarding costs for a system call with more arguments.

8We could also refer to this as a characteristic function or an indicator function.
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We then represent the absolute time taken by all delegated system calls (remote) as

follows:

remote =
∑
∈S
() (() +  ())

We can now calculate the total time taken () for a setup where some system calls

are delegated:

d =



+ remote + local

Thus, we can represent our new speedup () as

r =
nd
d

Expanding this out, we get

r =
 +

∈S ()

 +

∈S () (() +  ()) + (1 − ())′()

Intuitively, the more system calls that are forwarded (those which have () = 1),

the more overhead is incurred, and speedup is curtailed. Notice that in the denominator, the

time taken by the computational portion is scaled by a factor of 1
 . An ideal scenario would

have ′() take less time than (), meaning that an implementation of a system call in the

SOS would be more efcient than its counterpart in the GPOS. However, going forward,

we make the simplifying assumption that () = ′(), so that both implementations take

the same amount of time.
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(a) min. frequency

(b) max. frequency

(c) random

Figure 3.4. Projected speedup when the gain () varies for SPEC CPU 2017/NAS bench-
marks. This assumes a xed forwarding cost ( ) of 10 s and a xed percentage (90%)
of forwarded system calls. Three schemes for choosing which system calls to forward
are shown. From left to right, we select system calls by least frequently invoked (a),
most frequently invoked (b), and randomly (c).
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Figure 3.4 illustrates speedup projections (represented by ) using our rened

model for a subset of the benchmarks shown in Table 3.1. We initially x the forward-

ing cost, , at 10 s. This is representative of a scenario where forwarding occurs over

shared memory. We vary  to illustrate the effects of running the application in the SOS.

Each benchmark in the suite invokes a different set of system calls, and here we are

interested in seeing the effects of choosing different sets of system calls to forward. In this

case, we show three scenarios. A xed proportion of 90% of system calls are forwarded.

This proportion reects what we have seen on mOS, a real multi-kernel system. In each

graph we vary which system calls constitute that xed proportion. In the rst two scenarios,

system calls are chosen according to how many times they are invoked. Figure 3.4(a)

shows the projected speedup when system calls invoked infrequently by the application

are chosen to be forwarded. This is the most ideal scenario, as the forwarding overheads

will not be incurred often. Note that in IHK/McKernel, another multi-kernel system we

studied, roughly 30% of system calls are forwarded. If that proportion were used here, we

would not see much effect on projected speedup since most of these calls are infrequently

invoked (see Figure 3.9 and related discussion). Figure 3.4(b) shows the speedup when we

choose system calls which are invoked most frequently. This is not a forwarding policy one

should choose, but is shown here for comparison. Finally, Figure 3.4(c) depicts the results

when we make a random choice. Note how different benchmarks are affected differently by

the forwarding schemes. Both SPEC CPU and NAS benchmarks achieve a high speedup

no matter the scheme. This is because of the generally low system call activity in these

benchmarks (as shown in Table 3.1). However, bzip2 shows signicant difference when

we compare the “min. frequency” case with the “max. frequency” case. To see why,

it is illustrative to study Figure 3.9, which shows a breakdown of system call usage for

several of the benchmarks. In this experiment we traced all system calls invoked by each

benchmark, and counted the number of invocations for each individual system call. We

report these counts using a CDF. A point on this gure thus represents the percentage of
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system calls that have been invoked fewer times than the value on the horizontal axis.

Looking at the CDF for bzip2, it is clear that its speedup is curtailed because it uses a

small set of system calls often (this particular application invokes read() and write()

almost exclusively). It is thus critical that those system calls are not forwarded. When they

are, as in Figure 3.4(b), performance is severely affected. It is also clear from the gures

that applications which have a more varied system call distribution will be less affected

by selective forwarding schemes. More generally, workloads showing system call proles

with more statistical structure will be more amenable to selective forwarding schemes. This

aligns with intuition and prior experimental results from Gioiosa et al. [31].

In Figure 3.5, we choose three benchmarks bzip2 (skewed system call distribu-

tion), Linux kernel compilation with gcc (uniform distribution of system calls) and one

from the NAS suite, BT class C (compute intensive with very low system call activity),

and show with surface plots how their projected speedups change as we vary both the for-

warding cost ( ) and the gain factor from execution in the SOS. Here we forward 90%

of system calls (those invoked most infrequently). Note again the log scale on the  axis,

so the lower end of the scale indicates forwarding costs in the nanosecond range, the mid-

dle approaches milliseconds, and the higher end approaches roughly ten seconds. Along

the  axis, all benchmarks achieve a speedup, but note that from left to right these bench-

marks have characteristics less amenable to system call delegation, respectively. The BT

benchmark achieves the highest speedup, both because it has a small system call portion,

and because that portion involves very few system calls that are invoked in general. Linux

kernel compilation with gcc has the highest system call portion and a more uniform dis-

tribution of system calls, which leads to a curtailed speedup, resulting in a at surface.

For gcc as the forwarding cost increases, we observe negative speedup (i.e., GPOS

performs better than SOS), when speedup values go below 1 we trim the values in Fig-

ure 3.5 for better visualization.
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Figure 3.5. Projected speedup as the gain () and forwarding cost ( ) are varied for SPEC
benchmarks. The proportion of forwarded system calls is xed at 90%, and which calls
to forward is determined according to those least frequently invoked (min. frequency).
 is xed at 2.
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Figure 3.6. Projected speedup as the forwarding cost ( ) and the proportion of forwarded
calls vary, with gain () xed at 2.
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Forwarding cost only becomes a signicant factor in the bzip2 and BT cases when

it becomes greater than tens of milliseconds. This is more tolerance to forwarding over-

heads than we expected, and indicates that in many practical cases our naı̈ve model may be

sufcient.

Figure 3.6 shows another perspective on forwarding overheads. Here, we show the

speedup projected by our model as we vary both the forwarding cost ( ) and the percent-

age of forwarded system calls (assuming that percentage consists of infrequently invoked

system calls). We make two observations, both of which again align with intuition. The

rst is that workloads with more skewed system call distributions are more amenable to

delegation, even when a relatively large portion of the system call interface is forwarded.

The second observation is that when these workloads are not properly accounted for (i.e.

when the wrong calls are forwarded), the performance degradation is dramatic, as shown

in the curve for bzip2. An interesting note about this visualization is that the “topog-

raphy” of the speedup curves directly reect the structure in the application’s system call

invocation trace.

bzip2’s surfaces has a steeper drop-offs when an increasing number of system

calls are forwarded, indicating a heavy skew in the system call distribution (cf. Figure 3.9).

The smoother “rolling hill” of the BT benchmark indicates a small amount of syscall activ-

ity, and the more pronounced drop-off of gcc indicates higher, but more uniform syscall

activity. Figure 3.6 also shows us that compute-intensive benchmarks (like BT) are most

amenable to multi-kernel environments, since they are mostly unaffected by forwarding

overheads.

In Figure 3.7, we vary the gain and the proportion of forwarded calls. The inter-

esting point here is that with the xed forwarding cost of 10 s, we only see an effect

for bzip2 when almost all calls are forwarded (thus capturing the frequently invoked

read() and write() calls). Kernel compilation and BT are largely unaffected by such
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Figure 3.7. Projected speedup as the gain () and the proportion of forwarded calls are
varied. The forwarding overhead ( ) is xed to 10 s.

small forwarding overheads.

In Figure 3.8, we again show the effects of different forwarding policies, but as a

function of varying forwarding overheads. mcf_r, deepsjeng_r and bzip2 have steep
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(a) min. frequency

(b) max. frequency

(c) random

Figure 3.8. Projected speedup as the forwarding cost ( ) varies. We x the gain factor ()
to 2 and assume that 90% of system calls are forwarded.
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Figure 3.9. System call prole for selected benchmarks. Note the log scale on horizontal
axis.

drop-offs in speedup when the wrong set of system calls is forwarded. When infrequently

invoked system calls are delegated to the GPOS, forwarding overheads must reach several

hundreds of milliseconds before making a signicant impact.

3.3 Approximate Speedup Projections

The primary obstacle in measuring application performance directly in a multi-OS

environment is the OS development burden required to implement functionality in the SOS.

The simplest case is when the entire system interface is delegated to a GPOS. In this case,

the application benets solely from the properties of the execution environment provided

by the SOS (e.g., simplied, deterministic paging and ne-grained interrupt control), and

no development effort is spent porting system calls to the SOS. However, this scenario is

not ideal, as the results from the previous Section indicate. However, it would be useful

to project performance before undertaking the development effort to run an application

directly on a multi-OS system. In this Section, we describe our multi-OS emulator, called

mktrace, that enables this projection, allowing users interested in multi-OS setups to

perform a kind of “what-if” analysis. Users can run their unmodied programs using our

tool to project performance in a multi-OS setup without investing in a porting effort. We

believe our tool can provide key insights to developers, in particular those who have no
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prior experience with multi-OS systems.

Note that this tool does not actually leverage two separate operating systems. In-

stead, we leverage a Linux kernel module that employs a kernel thread on the same OS to

serve as a delegate (standing in for the control-plane OS); this delegate elds system call

requests from a running process. However, the delegation mechanism in mktrace is sim-

ilar to real multi-OS systems. For example, in the case of IHK/McKernel [11], for every

process running on light weight kernel (LWK), a proxy process is created on the Linux side

to handle delegated system calls. At a high level, the proxy process acts in a similar ca-

pacity to our service threads in mktrace. One difference is that a proxy process in a real

multi-kernel setup runs in user-space, which requires an additional context switch to handle

delegated system calls. Using our tool, a congurable subset of system calls are intercepted

by the kernel, which forwards them to this delegate thread with a tunable forwarding cost.

With this architecture we can experiment with different delegation schemes to determine

performance without spending effort porting an application to a new OS. Our emulator tool,

called mktrace, is freely available online,9 runs on Linux, and only requires that users

load a kernel module before using it.

CPU CPU

sys_foo_wrapper () {

}

sys_foo () {

}

patched
syscall
table

interceptor moduledelegate thread

foo()

sys_bar () {

}

bar()1

2
34

5

a

b

c

application

kernel

Figure 3.10. High-level overview of mktrace.

The primary technique used by our tool is system call interposition. This technique

has been used primarily for secure monitoring of kernel activity, both using in-kernel or

9https://github.com/hexsa-lab/mktrace
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user-level approaches [47, 48, 49, 50] and out-of-kernel by leveraging an underlying virtual

machine monitor (VMM) [51, 52, 53]. Typical interposition tools provide hooking points

for system call entry and exit, but we only need to capture entries in order to forward them.

Figure 3.10 illustrates how our tool works. After a user loads our system call interceptor

(a kernel module), system calls can be selectively forwarded, with tunable forwarding cost.

This is achieved by patching the kernel’s system call table. In the gure, a regular system

call bar() ((a)) is invoked, which vectors via a system call table entry ((b)) to the kernel’s

handler for that system call ((c)). When a forwarded system call foo() ((1)) is invoked,

our patched system call table entry ((2)) vectors instead to our module ((3)), which mirrors

register state (arguments) and the execution environment in the calling process (e.g., ad-

dress space). Our module then forwards the system call to a delegate thread, backed by a

separate kernel thread on a separate CPU ((4)), which spins for a congurable amount of

time (representing the forwarding delay), and then invokes the kernel’s original system call

handler ((5)). The results of the system call execution on the delegate kernel thread are sent

back to the calling process and execution continues normally.

3.3.1 Experimental Setup.

We conducted our experiments on a system called tinker, which has a 2.2GHz Xeon

E5-2630 CPU with 10 cores and 48 GB RAM. It runs Centos 7.7 with stock Linux kernel

version 3.10.0-1062. Hyperthreading is disabled, and the BIOS is congured for a static

power prole (maximum performance) to mitigate measurement noise from DVFS.

For these experiments, we selected several benchmarks from the initial set: bzip2,

Linux kernel compilation (kernel version 5.1.4) with gcc, the SPEC CPU suite, and the

NAS benchmarks (currently the serial versions).

In this Section we are not actually running applications in a real multi-OS system

(cf. Section 3.4), so we cannot empirically observe the speedup factor  given by running
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the application in the SOS. To approximate this factor, we designed a synthetic benchmark

which performs phases of variable amounts of computation followed by phases of xed

system call invocations. The computation is a simple Monte Carlo calculation of , dom-

inated by oating point operations. To articially induce a speedup, we simply vary the

amount of computation (by reducing the number of trials in the approximation) according

to a  value. Thus, a higher value of  is approximated by a concomitant reduction in

the amount of work done in the computation phase. The benchmark uses a synthetic sys-

tem call prole derived from traces gathered from bzip2 (skewed system call prole, I/O

intensive) and BT (uniform distribution of system calls, compute intensive) using strace.

3.3.2 Experiments.

We rst run the benchmarks described above in a standard Linux environment and

then using our mktrace tool, which approximates delegation. We measured the minimum

overhead of forwarding using this mechanism (represented by  in previous Sections) to

be 6.3 s, measured with 1000 trials. This is quite close to the forwarding costs incurred

by real multi-kernels, as we will see in Section 3.4. In all cases, because of the small

forwarding overhead, there is very little impact on performance. The largest overhead we

observed for mktrace was less than 1% across all benchmarks when using the “min.

frequency” syscall prole.

As described above, we now attempt to incorporate the gain factor () by approx-

imating gain using a variable amount of computation. Figure 3.11 shows the projected

speedup from both the naı̈ve model and the rened model for the synthetic benchmark

compared to the speedup empirically determined with mktrace. In this gure, we see

how the measured speedup of the benchmark changes with a varying gain factor. The

curve labeled “empirical speedup using mktrace” represents speedup relative to the default

setup on Linux without any system call delegation.
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(a) bzip2 prole; 90% forwarded

(b) bzip2 prole; 30% forwarded

(c) BT prole; 90% forwarded

Figure 3.11. Projected speedup when the gain () varies for the synthetic benchmark.

.
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(a) bzip2 (b) BT

Figure 3.12. System call proles for bzip2 and BT, derived with strace. Note the log
scale on vertical axis of the rst gure.

In Figure 3.11(a) we delegate >75% (similar to mOS) system calls with a system

call prole derived from a bzip2 trace. Here the rened model matches the measured

speedup closely. In Figure 3.11(b) we only delegate 30% of system calls (similar to IHK/M-

cKernel). We see that for higher  values the gap between rened speedup and measured

speedup increases.

In Figure 3.11(c), the system call prole is derived from BT, a compute-intensive

benchmark. The predicted speedup from both models converge in this case because for-

warding costs are negligible.

The small gap we see between the predicted speedup and the measured speedup in

Figure 3.11(b) we discovered was due to the xed forwarding cost assumption our model

makes. Depending on how the delegation mechanism is implemented, there is actually

some non-determinism in this cost (for example due to queueing and thread wake-up laten-

cies).

In order to understand this further, we run the synthetic benchmark (with the bzip2

system call prole) with a forwarding cost derived using three summary statistics: mean,

min, and max. The forwarding cost is estimated by taking the time difference between
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Figure 3.13. Model sensitivity to different summary statistics for derived forwarding cost
( ).

a system call running with and without mktrace. Figure 3.13 shows us that using the

minimum measured forwarding cost gives us the best speedup prediction, suggesting a

skewed distribution. This is not too surprising, since very rarely kernel events like interrupts

and context switches will inate the forwarding cost.

3.4 Experimental Validation

In this section, we validate our model by comparing its speedup projections with

actual execution time on real multi-OS systems. We study two multi-kernel systems that

have been deployed in production and that have quite different designs: IHK/McKernel10

from RIKEN and Intel’s mOS.11 We congure both mOS12 and IHK/McKernel13 such that

one core (the LWK core) and 15GB RAM are dedicated to the SOS. We select 15 GB as

this was the maximum memory we could allocate for a single core in IHK/McKernel on

10commit hash 62153.

11mOS v0.7.

12lwkctl -c lwkcpus=0.1 lwkmem=15g

13mcreboot.sh -t -c 1 -m 15
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our tinker testbed.

3.4.1 IHK/McKernel.

IHK/McKernel runs HPC applications on a light-weight kernel (LWK) to achieve

scalable execution [11], but notably the complete Linux API is available via system call

delegation. McKernel acts as the LWK and is primarily designed for HPC; it is launched

from IHK, the shim on the Linux side. McKernel retains a binary compatible ABI with

Linux and it implements only a small set of performance-sensitive system calls, delegating

the remainder to Linux. For every process running on McKernel there is a process spawned

on Linux called the proxy process. The proxy process facilitates system call delegation. It

provides an execution context on behalf of the application so that delegated calls can be

directly invoked in Linux. The list of system calls handled by IHK/McKernel, can be

found in a kernel header.14 We use this information in our rened model to estimate the

forwarding cost for delegated system calls.

3.4.2 mOS.

mOS uses a different design [10]. While the fundamental concepts of mOS remain

similar, mOS incorporates the LWK code directly in a Linux kernel image. The mOS

system call delegation mechanism is quite different from the proxy process approach. mOS

retains Linux kernel compatibility at the level of its internal kernel data structures, which

enables it to migrate threads directly into Linux. mOS implements system call delegation

by migrating the issuer thread into Linux, executing the system call, and migrating the

thread back to the LWK component. The list of system calls handled by mOS, can be

found in a kernel header.15

14See syscall list.h, available at https://github.com/RIKEN-SysSoft/
mckernel

15See include/linux/syscalls.h, available at https://github.com/intel/mOS
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3.4.3 Experiments.

To validate our models experimentally, we selected benchmarks from the SPEC

CPU 2017 [54], NAS Class C [55], and LAMMPS [56] benchmark suites, in addition to

the CCS QCD miniapp (Class 1) from RIKEN’s FiBER Miniapp Suite [57]. We only use

benchmarks that were able to run on both multi-OS systems. These are listed in Table 3.2.

We compare the performance of the benchmarks running purely on Linux with

multi-OS performance, for both mOS and IHK/McKernel. Both mOS and IHK/McKernel

are designed to improve the performance of large-scale parallel applications, not sequential

benchmarks. Since our model currently only captures sequential setups, we are not looking

for a performance improvement on the benchmarks relative to Linux. Rather, we are look-

ing to validate the projections of our model using real systems. We direct readers interested

in multi-OS performance benets and scaling studies to work by Gero et al. [29].

We measure the absolute execution time of the benchmarks on the various plat-

forms for ten trials and report the medians in Figure 3.14. We can see that for most appli-

cations, IHK/McKernel and mOS have similar performance to Linux, which again is not

surprising given that these benchmarks run sequentially on a single core. We observe that

I/O-intensive applications such as bzip2, which involves frequent system calls, has an

advantage on Linux since the multi-OS systems suffer from forwarding costs on system

call-intensive workloads.

Our goal here is to compare these execution times to our models’ predictions. In

general, one seeking to use our models could derive estimates for model parameters (,

, and the syscall prole) with microbenchmarking, proling, or by using reported perfor-

mance numbers from relevant multi-OS papers or developers. We provide example param-

eters here. To do so, we use both microbenchmarking and proling with the benchmark

suites to arrive at suitable parameters, which could be used by others evaluating speedup
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Table 3.2. Selected benchmarks from the SPEC CPU 2017, NAS Class C, LAMMPS, and
CCS QCD benchmarks for model validation.

Benchmark Description

bzip2 File compression

cam4_r Atmospheric modeling

deepsjeng_r Deep Sjeng chess engine (tree search)

lbm_r Fluid dynamics

mcf_r Combinatorial optimization

namd_r Molecular dynamics

parest_r Optical tomography with nite elements

BT Non-linear PDE solver (using block tri-diagonal)

CG Estimates minimal Eigenvalue of a sparse matrix

EP Generates independent Gaussian deviates

FT Solves a 3D PDE using fast Fourier transform

IS Sorts small integers using bucket sort

LU Non-linear PDE solver (using Gauss-Seidel)

MG Multi-grid on a sequence of meshes

SP Non-linear PDE solver (using scalar penta-diagonal)

LJ Lennard-Jones atomic uid simulation

Chain Simulation of bead-spring polymer chain melt

EAM Simulation of Cu metallic solid using EAM method

Chute Chute ow simulation for packed granular particles

Rhodo Simulation of Rhodopsin protein

CCS QCD Lattice quantum chromodynamics miniapp
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Table 3.3. Measured round-trip forwarding costs for delegated system calls in IHK/McK-
ernel and mOS.

Benchmark
Measured 2  (min., in s)

IHK/McKernel mOS

write_to_file 6.28 7.56

fstat 7.05 7.06

uname 8.05 7.60

write_to_console 10.36 6.46

for similar workloads.

We calculate the forwarding cost parameter ( ) for IHK/McKernel and mOS sep-

arately by running a delegated system call natively on Linux and subtracting its execution

time from the time it takes to run the same system call in the relevant multi-OS system.

We take the minimum measured value over 1000 trials. Table 3.3 shows the results (mea-

sured in s) of four delegated system calls. Based on these results, we set the round-trip

forwarding cost (2 ) to the smallest measurement observed for each system (6.28s on

McKernel and 6.46s on mOS). Note that our measurement tool invokes these system calls

directly using assembly wrappers and the syscall instruction to avoid including the costs

of user-space system call code (i.e., the syscall wrappers in libc).

For the gain parameter (), we rst determine a benchmark-specic gain factor

for each of the benchmarks in our suites, then aggregate these using a summary statistic

which we will use for the actual  parameter in the model. To determine a benchmark-

specic  value, we plugged in the forwarding cost and the overall speedup measured from

benchmark runs into our rened model and solved for  for each benchmark. Table 3.4

shows our derived, benchmark-specic  values. For IHK/McKernel most benchmarks

have  in the range of ∼0.96–1.1. For mOS, the gain factor ranges between ∼0.98 and 1.1.

If we exclude bzip2 (not representative for HPC workloads),  ranges from ∼0.99–1.1
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Table 3.4. Derived  values and percentage of system calls forwarded for both multi-
kernels.

Benchmark

Derived  Syscalls Forwarded

IHK/McKernel mOS IHK/McKernel mOS

bzip2 0.96 0.98 25% 90%

cam4 r 0.99 1.01 35% 88%

deepsjeng r 1.00 1.00 25% 83%

lbm r 1.00 1.01 31% 85%

mcf r 1.00 1.01 23% 77%

namd r 1.01 1.00 25% 83%

parest r 0.98 1.00 36% 79%

BT 1.01 1.01 33% 87%

CG 1.00 1.02 33% 87%

EP 1.00 1.00 33% 87%

FT 0.99 0.99 33% 87%

IS 1.00 1.00 25% 83%

LU 1.00 1.00 33% 87%

MG 1.01 1.01 33% 87%

SP 1.00 1.00 33% 87%

LJ 1.00 1.00 27% 80%

Chain 1.00 1.00 27% 80%

EAM 1.00 1.00 31% 81%

Chute 1.00 1.01 27% 80%

Rhodo 0.99 1.01 27% 80%

CCS QCD 1.01 1.01 21% 91%
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Figure 3.14. Runtime of selected SPEC, NAS Class C, LAMMPS, and CCS QCD bench-
marks on Linux, IHK/McKernel, and mOS (lower is better).

for both multi-OS systems. This is in line with what we expect from single-core, compute-

intensive benchmarks.

Figure 3.15 compares our model predictions with measured speedups. Figure 3.15(a)

shows the SPEC benchmarks, Figure 3.15(b) shows the NAS benchmark suite, and Fig-

ure 3.15(c) shows the LAMMPS and CCS QCD benchmarks. The left halves of the gures

show projections and measurements for IHK/McKernel, and the right side depicts mOS.We

show speedup projections from our naı̈ve model (every syscall delegated) and our rened

model. For both, we use two methods to supply a  parameter to our model. In the rst,

we use an estimated gain factor by using empirical measurements from others. In particu-

lar, we referred to speedup measurements from Gero et al. [29], where the improvements

from running in a multi-OS system vary from 4% to 280%.

We pick the lowest of these (4% improvement observed in LAMMPS, HACC, and

QBOX benchmarks on a single node) as a conservative estimate for , as the larger im-

provements arise from these systems running at scale. We also show projections using a
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(a) SPEC CPU benchmarks and bzip2.

(b) NAS benchmarks (class C).

(c) LAMMPS and CCS QCD benchmarks.

Figure 3.15. Empirical speedup on IHK/McKernel (left) and mOS (right) compared to
model predictions. We use an aggregate  value of 1.003 for IHK/McKernel and 1.007
for mOS. We use an estimated  of 1.04 for both multi-OS systems.
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 value computed as an aggregate (median) of the benchmark-specic values reported in

Table 3.4.

In Table 3.4 we also report the percentage of system calls delegated in IHK/McK-

ernel and mOS; we observe that IHK/McKernel delegates a small set of system calls while

mOS delegates >70% system calls. In Figures 3.15(a) and 3.15(b) the projected speedup

values using an aggregate  parameter are closest to the mark. This is unsurprising, since

this value was derived from the same benchmarks whose speedup is being projected here.

The naı̈ve model and the rened model project similar speedups for most benchmarks,

since on the whole they invoke system calls infrequently. To determine the accuracy of

our models, we compute the mean absolute percentage error (MAPE) of its predictions

relative to the measured overall speedups on mOS and IHK/McKernel. The rened model

achieves 99.30% accuracy and 99.43% accuracy for IHK/McKernel and mOS, respectively

(using the median aggregate  value). Using parameter estimates from prior work, the

rened model achieves 96.18% and 96.79% accuracy, respectively. In practice, a user of

this model may not be able to directly determine , so the estimated parameters represent

a more realistic scenario. One thing to note here is that, provided a fairly close estimate

of  is given, our naı̈ve model will likely sufce to quickly project speedup for compute-

and memory-intensive workloads. It can thus be helpful in guiding developers in deciding

whether or not to use a multi-OS system.

3.5 Discussion and Limitations

What is clear from the previous Section is that using the models we presented,

one can develop intuition for how an application will behave in a software disaggregated

system. Notably in the case of compute intensive benchmarks, with forwarding costs up to

the microsecond range, the naı̈ve model matches the rened model quite well, indicating

that it would be sufcient for single-node setups, as well as multi-node setups with low-

latency interconnects. Thus for the single node case, our intuitive model is both simple and
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Figure 3.16. Simple //1 queueing model for  delegator threads and a single delegate
thread.

accurate. While we determine the parameters for our model using manual experiments, a

good estimate for them would sufce for coarse speedup projections, a likely use case for

our models. Parameters could also be determined automatically by proling application

code or by running a suite of microbenchmarks.

There remain several limitations with these models, however. The primary limita-

tion is that they assume a single delegator thread and a single delegate thread (one on the

GPOS and one on the SOS). While this is a reasonable setup for serial workloads, it is

unrealistic for parallel applications, where system call requests from the delegator might

come from several cores (application threads) or several machines. In this case, a single

delegate (GPOS) thread servicing these requests would be inadequate unless the workloads

collectively involve few system calls, thus minimizing queueing delays. As we have seen,

this is actually not an unreasonable expectation for HPC applications, so an enhancement

involving simple queueing models is possible. For example, Figure 3.16 shows a single

GPOS delegate thread modeled as an //1 queue (Poisson arrivals and exponential ser-
vice times). Here we assume each of  application threads makes system call delegation

requests following a distinct Poisson arrival process,  . By the merging property, these

arrivals sum as follows.
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 =
−1∑
=0


The delegate thread handles system call requests following exponential service

times, with average service rate . The  and  parameters can be easily determined

with application traces. Using Little’s Law we can then determine the average queueing

delay for system call delegation requests (subtracting out service times):

 =
1

 − 
− 1


We can then estimate speedup by incorporating this into our rened model in Equa-

tion 3.2.2, adding × () to the system call service times (), where () is the number

of invocations of syscall  and  is the average queueing delay determined above. While

a careful analysis of such queueing models is outside the scope of this paper, it is worth

discussing their limitations. In workload scenarios that require more than one delegate

thread, an initial treatment might extend the model to an // (multiple server) model.

However, the primary issue here is that treating the service rate as a memoryless process ig-

nores confounding performance factors caused by concurrent request streams. Concurrent

system call requests coming from two delegator threads may actually both touch the same

shared state in the GPOS. For example, in Linux, two concurrent mmap() calls will both

mutate the region tree in the parent process’s task struct. The locking overheads caused by

such shared accesses will not be included in a simple queueing model, so it would likely

overestimate speedup. Similarly, such a model would not account for low-level hardware

overheads sensitive to thread placement, e.g., those due cache coherence trafc and NUMA.

The xed forwarding cost assumptions we make are also a limitation. This assumption will

amplify inaccuracies when we move to multi-node systems.



45

3.6 Conclusion

We introduced two models to help developers gain insight into application speedup

when a program runs on software disaggregated systems. We showed that applications

with skewed system call distributions can tolerate higher forwarding overheads when a

good forwarding policy is selected, but suffer from more dramatic effects when we forward

the wrong system calls. To measure the effect of these overheads on real applications, we

presented an open-source tool called mktrace which approximates forwarding overheads

on existing systems. Using this tool, we demonstrated how to make speedup projections for

applications without actually deploying them on a software disaggregated system. Finally,

we validated our model using two real software disaggregated systems. Our model achieves

96.18% and 96.79% accuracy in these settings.
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CHAPTER 4

TRACKFM: AUTOMATIC SUPPORT TO RUN APPLICATIONS ON SOFTWARE
DISAGGREGATED SYSTEMS

Chapter 3 discusses the benets of analytical modeling in understanding applica-

tion speedups before developers port their applications to software disaggregated systems.

In this chapter, we design, implement, and evaluate TrackFM,16 a compiler and runtime

framework that achieves full transparency (no porting effort) by recovering application se-

mantics during compiler analysis. TrackFM leverages state-of-the-art compiler middle-end

analyses and transformations to achieve high performance, using the heavily optimized

AIFM runtime as a backend. No specialized hardware or modications to the OS are re-

quired. Through a mix of micro and macro-benchmarks, we demonstrate that the compiler

has sufcient knowledge to enable TrackFM to achieve near-performance parity (within

10%) compared to a library-based approach like AIFM, where developers manually mod-

ify code, while maintaining the programmer transparency of Fastswap

We summarize our contributions as follows:

• We introduce the compiler-based approach to software-based far memory, which pro-

vides a path to simultaneously achieving programmer transparency and performance

on memory disaggregated systems.

• We demonstrate how to use modern compiler analysis and transformation techniques

to automatically transform existing applications to support far memory.

• We introduce new compiler analysis and transformation passes that improve perfor-

mance for the target applications.

• We present the design and implementation of TrackFM, a new compiler-based far

memory system.

16The content of this chapter is based on published research [42]
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Listing 4.1. Simple loop using AIFM’s remote array.

int sum ( RemoteArray * array, int n) {

int sum = 0;
for (int i = 0; i < n; i++) {

DerefScope scope;

sum += array.at(scope, i) ;

}
return sum;

}

• We report on an extensive performance evaluation using numerous microbenchmarks

and applications.

TrackFM is freely available online.17

4.1 TrackFM Design

Our goal is to use the compiler to approach the performance of library-based far

memory solutions by automatically transforming existing applications, eliminating the need

for programmer modications. We aim to reuse the AIFM far memory runtime and auto-

mate its integration into the application. As an illustrative example, consider a for loop

that computes the sum over an array of integers. To make this array remotable in the library-

based solution (AIFM), the programmer must use the remote array type provided by AIFM

libraries. The programmer must then change their code manually, as shown in Listing 4.1.

The highlighted lines indicate programmer changes. Although these changes are minimal,

they require understanding of AIFM’s semantics; namely, a scope object must be provided

so that AIFM does not evacuate in-use local memory. Moreover, modifying applications

with large code bases to run on AIFM may not be practical.

We aim to transform unmodied C/C++ applications to use remote memory au-

17https://github.com/compiler-disagg/TrackFM
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Figure 4.1. Users compile applications with TrackFM to run on a far memory cluster.

tomatically. Figure 4.1 shows our overall design. Our compiler toolchain takes the un-

modied C/C++ source code18 for an application, and using an LLVM-based, middle-end

analysis and transformation pipeline, remotes certain memory allocations via AIFM. It also

injects a thin runtime layer into the application that interfaces with AIFM. The toolchain

produces a modied binary that runs on a far memory cluster. Our transformations take

place at the IR level.

The primary obstacle to automating the integration with AIFM is the semantic gap

between the application developer’s high-level knowledge of data structures and what the

compiler sees at the granularity of memory accesses. AIFM works at the level of objects,

contiguous chunks of remotable memory, and what constitutes an object is determined by

the application developer. For example, when AIFM’s object size is set to 256B, a remote

1KB array will be represented by four chunked AIFM objects. A remote linked list, on the

other hand, might use an AIFM object size of 64B to constitute a single linked list node.

Unlike AIFM, TrackFM works on unmodied code, so it must automatically determine

the mapping of memory allocations to AIFM objects using low-level information (i.e., by

drawing boundaries around chunks of contiguous memory allocations). In kernel-based

18Our approach also applies for applications shipped as LLVM bitcode.
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approaches, any page can be swapped to a remote node, while in AIFM, candidates for re-

moting are determined by which data structures the programmer uses the AIFM data types

for. Our design strikes a middle ground, where any heap-allocated data can be swapped

out (but not at the granularity of pages). Whether these heap-allocated regions actually are

swapped out depends on temporal access patterns; hot regions will be kept local, while cold

ones will be evacuated to the remote node. The TrackFM runtime tracks this “hotness” via

AIFM’s existing object access interposition mechanisms. AIFM has several programmer-

directed parameters that affect its performance, for example, the degree of concurrency,

object size, and prefetching strategy. We will see how the compiler’s choices for these pa-

rameters impact performance in Section 4.3. Since our compiler framework requires source

code, programs that use external libraries present a challenge. The naı̈ve route is to ignore

external libraries. Memory that they allocate will not be remotable. However, TrackFM

needs to transform pointers to automatically remote them, and those transformed pointers

can easily escape to library code, which does not know how to handle them. A library

may then incorrectly attempt to access remote memory not yet localized by the TrackFM

runtime. The alternatives are to (1) have programmers run external libraries through the

TrackFM compiler or, (2) only allow pre-transformed versions of the libraries provided by

us. We explore both options, though the latter is more pragmatic.

4.2 Implementation

We rst outline how TrackFM transforms applications to use far memory, then we

describe how we incorporate the high-performance AIFM runtime with TrackFM. Finally,

we describe our compiler transformations in detail, including how we manage the over-

heads they introduce. We focus on realizing TrackFM in the context of C/C++ programs.

Far Memory Pointer Transformation The rst distinction that TrackFM must make is

between remotable and local-only pointers. AIFM makes this distinction using far mem-
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Figure 4.2. TrackFM’s analysis and transformation pipeline.

ory data structures. However, TrackFM cannot rely on user annotations since we target

unmodied code. Conceptually, all heap-allocated pointers must be managed by TrackFM,

and all others (stack, global data, etc.) remain unchanged. However, as a pointer is just an

address, we have no a priori way to tell them apart. TrackFM does this by overloading the

higher-order bits of the address. In particular, it leverages x86 non-canonical addresses.19

The 60ℎ bit of the address is used to ag a pointer as a TrackFM pointer. If this bit were to

be set in any non-TrackFM pointer, the pointer would be invalid. To enforce this distinc-

tion, TrackFM provides a custom malloc implementation which replaces the default libc

malloc. Our custom implementation always returns TrackFM (non-canonical) pointers.

Intuitively, a TrackFM pointer can refer to memory that is either on the local or

remote system. Thus, the program must be prevented from using the pointer directly. The

compiler must provide an indirection layer that, when the pointer is accessed at runtime,

localizes the memory and produces a standard pointer in the local address space. Thus,

we must guard accesses to TrackFM pointers. These guards constitute compiler-injected

code that ensures memory is localized before access; they comprise the lion’s share of

19Depending on the x86 implementation, the top 16 or 7 bits of a virtual or physical
address must be either all zeros or all ones in order for the address to be “canonical.” If a
“non-canonical” address is ever used for an instruction fetch, a load, or a store, a general
protection fault is triggered.
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TrackFM’s overheads, as we will see in Section 4.3. To properly guard pointers, the

TrackFM compiler applies a series of analyses and transformations at the compiler’s IR

level (called passes), as shown in Figure 4.2. These passes are built on NOELLE [58],

a novel analysis and transformation framework that expands LLVM [59] by introducing

high-level and program-wide abstractions. We discuss each pass below.

Runtime Initialization To make far memory transparent to programmers, this pass in-

serts hooks in the program’s main function to initialize TrackFM’s runtime system.

Pointer guards In this pass, TrackFM searches for all LLVM IR-level load and store

instructions that correspond to heap allocations (returned by malloc) and marks these

instructions as eligible for guard transformation. The pass ignores accesses to stack and

global objects by leveraging NOELLE’s program dependence graph abstraction, which is

powered by several high-accuracy memory alias analyses. Candidate heap pointers are later

transformed by the guard transformation pass, described in Section 4.2.

Loop Chunking We introduce a novel loop chunking analysis to reduce guard overheads

introduced in loop bodies. Our loop chunking pass incorporates NOELLE’s proling facil-

ities when available to further improve our optimization. We describe the relevant transfor-

mation in Section 4.2, and techniques to improve it in Section 4.3.

Libc Transformation This pass transforms all memory allocation calls (mainly for heap

allocation) in libc (e.g., malloc, realloc, free), into TrackFM-managed memory

runtime calls. The TrackFM versions leverage AIFM’s region-based allocator under the

covers to allocate remotable memory. Custom heap allocators are not currently supported,

but provided they simply replace libc malloc with their own managed heap, this would be

trivial to add support for.
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Bridging AIFM with the Compiler To integrate with AIFM, we use a lightly modied

version of AIFM that includes hooks into the TrackFM runtime. We next discuss details

about integrating TrackFM pointers with the AIFM runtime. In particular, we must trans-

form contiguous heap allocations into AIFM objects, xed-size chunks that can be either

in the local or remote state. We will see in Section 4.2 that signicant complexity arises

because a given heap allocation can comprise multiple AIFM objects, each of which may

be in different states (local or remote).

AIFM manages remotable memory at the level of individual data structures. Each

of these data structures in the AIFM runtime is implemented as a C++ class which extends

a base class that handles the underlying mechanisms of remote objects. We extend this base

class with a unied abstract data structure (ADS) that the compiler uses to capture all re-

motable allocations for the application. With AIFM, programmers specify remote memory

usage by leveraging one of these specialized data structures. However, with TrackFM, the

compiler identies all remotable allocations and attaches them to a single runtime-managed

object pool. The ADS thus contains a pool of objects that represent the total far memory

that an application can use. TrackFM interposes on an application’s allocation sites and

chunks the allocations into objects in the global pool at run-time.

Object size selection In AIFM, the user/data structure developer annotates each data

structure with an object size for a given application. Since TrackFM does not require

programmer changes, it is currently constrained to choose a single object size at compile

time for the entire application. Unlike Fastswap, which is constrained by the page size,

TrackFM supports object sizes smaller than a page, mitigating I/O amplication. While

multiple object sizes are possible, this increases the complexity of the runtime system and

compiler transformations, so we leave this for future work. We note that it is likely the case

that only a few xed object sizes make sense, and that these are likely to be powers of two

ranging from 64B (cache line size) to 4KB (base page size). Using object sizes smaller
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than a cache line would saturate the network with many small packets, and would not take

advantage of the network’s bandwidth, which is geared to larger packets. On the other

hand, much larger object sizes would suffer from I/O amplication, and defeat the purpose

of sub-page granularity far memory. While the choice of object size is currently selected by

us, the small search space suggests that an autotuning approach is feasible. Furthermore, if

we are correct that only the powers of two from 6 (cache line) to 12 (base page size) need

to be considered, an exhaustive search involving recompilation and a short-term execution

would simply expand the short compile times.

Allocating far memory TrackFM only remotes heap allocations and maintains a sim-

ple non-canonical address space to service memory allocation calls by the application.

All memory allocation call sites within libc are intercepted by TrackFM and will return

TrackFM-managed pointers starting from the non-canonical address range (starting at ad-

dress 260). Because TrackFM rewrites pointers at the middle-end, even if a pointer is cast

to an integer type (for example to perform offset math), the resulting load/store will still

be properly guarded, provided that the non-canonical bits of the address are preserved.

Internally, TrackFM maps non-canonical pointers to objects in an ADS. The object cor-

responding to a TrackFM pointer can be derived by dividing the TrackFM pointer by the

object size (a right shift for powers of two). A single memory allocation can span multiple

objects, while smaller allocations are grouped into a single object.

TrackFM object state table Any particular allocation could be in a superposition, i.e.,

some of its constituent objects (chunks) could be local while others are remote.20 AIFM

tracks the local/remote state of objects by maintaining two metadata representations (one

for each state) internally. Determining this state in AIFM requires two memory references,

20This is a property that makes compiler-based far memory different from prior DSM-
focused systems.
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Figure 4.3. The object state table caches AIFM object metadata (shown on top, and repro-
duced from the AIFM paper [1]) for lighter-weight guards.

one to nd the object, and another to access its metadata. TrackFM eliminates one of these

operations by maintaining an object state table, an optimization that caches object metadata

in a contiguous lookup table, allowing us to perform a simple index calculation rather than

an indirect memory reference to derive object metadata. This is possible because of the

way TrackFM encodes object IDs in the non-canonical range of the pointer. We modied

AIFM so that this table is kept coherent with the AIFM-managed object metadata. The

object state table contains metadata entries (8B each) for each object in the system, where

the total number of objects is determined by the total size of the remote heap. The overhead

of the table can be computed similarly to a single-level page table. For example, if we have

a 32 GB remote heap (as in many of our experiments), we would need 223 entries in the

table (assuming each object is 4KB), thus remote heap (as in many of our experiments),

we would need 223 entries in the table (assuming each object is 4KB), thus consuming 64

MB for the full table. As shown in Figure 4.3, the compiler-inserted guard derives the

object metadata from this table in order to determine whether or not the referenced object

is localized.
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TrackFMGuards As described above, TrackFM instruments application derived LLVM

bitcode with guards on every relevant load and store instruction referring to heap-allocated

memory at the LLVM middle-end layer. These guards comprise compiler-injected instruc-

tions that ensure the memory is localized (brought into local memory) before being ac-

cessed. TrackFM guards localize an object by reverting the non-canonical address returned

from the TrackFM allocator back into a canonical address before execution of the target

load/store. Figure 4.4 depicts the guard. Figure 4.4(a) shows an abstract depiction of the

injected code as a control ow graph, and Figure 4.4(b) shows the guard after it has been

lowered to x86 64 assembly. We break down the TrackFM guard into three components:

a custody check, a fast-path guard, and a slow-path guard. Note that on the fast path only

one of those instructions is a data access (to the object state table) that can result in a cache

miss. Figure 4.4(b) highlights the fast path through the guard with vertical orange lines on

the left. Note that we can also enable optional debug instrumentation that indicates when

guards take the fast or slow path, and which AIFM code path they trigger.

Custody check TrackFM rst checks whether the pointer is managed by TrackFM. Re-

call that this means only heap-allocated memory. If a pointer is not managed by TrackFM,

we immediately jump to the target load/store. This path constitutes roughly four instruc-

tions. If the pointer passes the custody check (i.e., it is a TrackFM pointer), we perform

a table lookup to derive the object state table entry corresponding to the AIFM object,

and then load the object state of the TrackFM pointer. This path constitutes roughly six

instructions.

Fast-path guard We use AIFM’s internal object metadata to determine if an object is safe

to access, i.e., guaranteed to be local. Safety is satised if certain bits in AIFM’s internal
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(a) abstract control ow.

0: shr $0x3c,%rax // custody check (is this TrackFM-managed ptr?)
1: je e // if not, perform original load/store
2: lea 0x20(%rsp),%rdi // map non-canonical ptr to object metadata
3: shr $0xc,%rdi
4: xor %r15,%rdi
5: mov (%r12,%rdi,8),%rax
6: test $0x10580,%eax // is object safe (localized)?
7: je a // yes, go to fast path guard
8: callq <slow_path_guard_fn> // otherwise, runtime call (slow path guard)
9: jmp b
a: shr $0x11,%rax // pointer offset math
b: lea 0x20(%rsp),%rcx
c: and $0xff8,%ecx
d: add %rax,%rcx
e: mov %rbx,(%rcx) // TARGET LOAD/STORE

fast-path guard

object metadata lookup

(b) generated x64 code.

Figure 4.4. Left: control ow of compiler-inserted guard check. Circles indicate condi-
tional branches and squares indicate exit nodes. Each node is annotated with the number
of x64 instructions executed. Right: guard lowered to x64 code. The vertical orange
lines indicate the fast path (highlighted in blue on the left).

metadata representation are cleared.21 When safety is satised, the fast-path guard will be

taken, constituting 14 instructions. Note that it appears that there is a time-of-check to time-

21AIFM must indicate that the object has been localized either through a blocking
access or an asynchronous prefetch request, and is not a candidate for evacuation to the
remote node.
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of-use issue between the test instruction (line 6) and the actual target load/store (line e).

That is, if the safety check passes and this application thread gets context switched out (or

even if there is a race), an evacuator might run on another core and delocalize the object,

rendering the pointer invalid for the nal target load/store. This issue is prevented because

AIFM’s evacuator threads use a barrier that waits on all application threads to converge to a

state where remotable pointers are “out-of-scope.” While within the context of a TrackFM

guard, the app thread is guaranteed not to be in this “out-of-scope” state, preventing the

convergence necessary for the evacuator to proceed. This means that between line 5 and

line e, the object cannot be evacuated.

Slow-path guard If the object is unsafe to access, then we must call into the TrackFM

runtime. TrackFM in turn calls into the AIFM runtime to dereference the object, which

could involve a remote fetch. When TrackFM interfaces with AIFM here, it adheres to

AIFM’s internal DerefScope API (shown in Listing 4.1), and also triggers a periodic

collection point to allow stale objects to be evacuated to the remote node. This runtime call

in the slow path, which has a higher cost, ensures safety. Once TrackFM ensures safety,

it performs the target load/store. The slow-path guard comprises at least 144 instructions

when the pointer object is already localized. However, if the object is remote, the cost of

the slow-path guard will be dwarfed by the remote fetch cost.

Managing Loop Overheads Up to this point, we focused on direct pointer accesses.

However, there are many cases where pointers are accessed via an offset, a major example

being array accesses. It is common for such accesses to occur in loops. Ideally, when

iterating over a collection (e.g., an array) in a loop, we could localize the entire array at

the beginning of the loop, bringing any remote elements local before accessing them. This

optimization was commonly employed by compiler-based DSM frameworks [60, 61, 62].

However, because we build on AIFM, and a single collection might constitute multiple
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naïve transformation

= fast-path guard

with chunking optimization

= slow-path guard

= locality guard
= obj. boundary check

for (i = 0; i < N; i++)
sum += GUARD(a[i]);

(end, ptrid) = tfm_init(a)
tfmptr = tfm_rw(ptrid);
for (i = 0; i < N; i++)

sum += tfmptr[tfm_idx(ptrid)]
if (++tfmptr == end)

tfmptr = tfm_rw(ptrid)

Figure 4.5. The loop chunking optimization eliminates fast-path guards within loops when
object boundaries are not crossed. This trades off a cheaper conditional branch inserted
in every iteration (yellow) and a more expensive guard at object boundaries (orange).

AIFM objects, the entire collection might be in a superposition (simultaneously local and

remote). Moreover, the entire array may not t in memory. This renders the DSM-style

hoisting optimizations ineffective, and it means that all pointer accesses within a loop body

must be guarded.

However, when many collection (array) elements t within a single AIFM object,

many of these guards are redundant. They are only necessary when we cross object bound-

aries in the loop. In AIFM, the iterator classes developed by the library developer for the

remote data structures manage this overhead. With TrackFM we leverage the compiler’s

knowledge of the loop to reduce this overhead by developing a loop chunking optimization

for TrackFM pointers.

Figure 4.5 depicts such a situation with a contiguous array, where multiple array el-

ements t within an AIFM object. The naı̈ve guard insertion strategy will involve injecting

guards at every element access. The slow-path guards (shown in red) will be taken at object

boundaries, i.e., when i is a multiple of the object size, and fast-path guards (blue) will be

taken on every other access. With our optimization, the compiler can determine the induc-
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tion variable of a loop, including the step count and the start value of the induction variable,

so it knows that sequential accesses within the boundaries of an already fetched object do

not require fast-path guards. This trades off many fast-path guards with a slightly more

expensive locality invariant guard at object boundaries that calls into the runtime to pin the

object in local memory for the duration of accesses to the object (one loop chunk). Ob-

ject boundary checks (yellow) are also inserted on every access to detect when the locality

invariant guard should be taken. Note that this optimization is not just applicable to con-

tiguous arrays; it applies more generally to loops that employ a loop-governing induction

variable, which is common in practice (we will see this in Section 4.3). The analysis pass

for the loop chunking optimization searches for spatially local memory accesses that occur

in loops, typically a popular location of hot code. Upon nding these accesses, TrackFM

attempts to mitigate the overhead from guards in the loop body by chunking the origi-

nal pointer into object-size chunks. To identify such memory accesses, TrackFM makes

use of NOELLE’s induction variable (IV) analysis.22 Such analysis is unique as it detects

induction variables as patterns in the dependence graph, rather than building on variable

analysis. This leads us to capture signicantly (∼3×) more induction variables than what

is traditionally possible. However, TrackFM can also be adapted to use other IV analyses

should better techniques arise. Note that there is not a correctness issue if the IV analysis

misses induction variables; it just results in lost loop chunking optimizations. We plan to

further generalize our loop analysis in the future, for example by adapting polyhedral meth-

ods [63] to NOELLE. Our optimization is particularly effective for workloads that display

high regularity.23 Prefetching plays an important role in such workloads. TrackFM can

detect sequential access at compile-time, so it uses prefetching alongside loop chunking to

mitigate loop overheads. This has an increasing impact on performance as the number of

22This is a more sophisticated analysis than what is available in gcc or LLVM. See
§2.B and §4.C of the NOELLE paper [58] for details.

23That is, spatial locality of access closely matches temporal locality of access.
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pointers iterating over induction variables in a loop increases. This demonstrates a strength

of the compiler-based approach to far memory: kernel-based approaches cannot take ad-

vantage of such loop-centric memory analysis; they must make post hoc inferences based

on run-time page faults.

Improving Loop Chunking Loop chunking is not always benecial. In particular, when

array elements are large (so that fewer of them t within a xed-sized AIFM object), or

the loops have a small iteration space, there are fewer fast-path guards in the rst place. If

we apply the loop chunking transformation in such cases, performance can actually drop

relative to the standard guards. Intuitively, there is a break-even point when sequential

array access occurs at a ne enough granularity for this transformation to pay off. To help

the compiler determine where that point is, we develop a simple cost model.

Cost Model Let  be the size in bytes of a TrackFM object, and let  be the size of an

element in a collection accessed in a loop. For example, for an 8-byte integer,  would

be 8. We model the number of elements that t within a single TrackFM object as the

object density,  = 
 . We are interested in determining how densely elements must be

packed before the compiler applies the loop chunking transformation. Intuitively, the more

dense an object, the more fast path guards will be involved, so the more advantageous the

optimization will be. Conversely, if there are few elements per object, the transformation

could be detrimental. With the naı̈ve transformation, each loop will iterate over some

number of objects, and each object must incur a fast-path guard for each element access,

except for the rst, which requires a slow-path guard. For each object there will thus be one

slow-path guard and  − 1 fast-path guards. Slow-path guards have cost  and fast-path

guards have cost   . We model the guard costs at the level of individual objects. We can

then estimate the cost of the entire loop in terms of guards:
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 = ( − 1)  + 

Our loop chunking optimization replaces fast path guards (14 instructions) with less

expensive object boundary checks (3 instructions) that determine when an object boundary

is crossed. The object boundary checks are shown as small, yellow circles in Figure 4.5.

Slow-path guards are replaced with slightly more expensive locality invariant guards (or-

ange circles) at object crossing boundaries, which involve a call to the runtime. We model

the cost of the boundary checks as  and the locality invariant guards as  . The cost of

the transformed loop in terms of guards is then:

opt = ( − 1) + 

When a loop iterates over large elements, the relatively high cost of the invariant

guard can offset the elimination of the fast-path guards. Thus, we must only apply the

optimization when there is sufcient object density, i.e.:

 >
 − 
 −  

Figure 4.6 shows the projected cost of a simple loop with a varying number of

iterations for the baseline method and the loop chunking optimization. The chunking opti-

mization becomes preferable once an object comprises as few as ∼730 elements. The curve

on the plot shows empirical measurements of loop cost. Note that the projected break-even

point matches the empirical data. Thus, if the compiler can determine , we can make

intelligent choices about when to apply the loop chunking transformation. To do this, we

leverage NOELLE’s proling engine to collect loop code coverage statistics. With the pro-

ling pass in TrackFM we lter out loops with low object density transparently without
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Figure 4.6. Cost model to capture the point at which loop chunking becomes advantageous.
The horizontal dotted line shows empirically when loop chunking benets, and the ver-
tical red line shows when the model predicts a benecial outcome.

modications to source code.

4.3 Evaluation

The TrackFM compiler must make choices about how it structures far memory ob-

jects and passes information to the runtime system. We evaluate the performance impact

of these choices and the overheads of compiler-injected guards using microbenchmarks,

studying the impact of different types of workloads and access patterns in a controlled set-

ting. We then demonstrate that by making good choices, TrackFM can approach the perfor-

mance of AIFM on application benchmarks while maintaining programmer transparency.

We seek to answer the following questions in our evaluation:

• How expensive are TrackFM guards? (§4.3)

• To what degree can compiler analysis and transformations mitigate guard overheads?

(§4.3)

• When the compiler can control AIFM object size and prefetching, how do its choices

impact performance? (§4.3)
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• To what degree can TrackFM mitigate I/O amplication? (§4.3)

• How do TrackFM’s optimizations translate to overall application performance rela-

tive to state-of-the-art approaches? (§4.3)

• How does TrackFM affect code size and compilation time? (§4.3)

Experimental setup We conducted our experiments on CloudLab [64] using two x170

machines with 10-core Intel Xeon E5-2640v4 CPUs clocked at 2.40 GHz, 64GB RAM

and a 25 Gb/s Mellanox ConnectX-4 NIC. We used Ubuntu 18.04 (to support AIFM) with

stock Linux kernel version 5.0 and DPDK version 18.11. For Fastswap measurements we

use the latest version24 ported to the 5.0 kernel.25 We use the most recent publicly avail-

able version of AIFM.26 TrackFM builds on LLVM version 9.0.0, with NOELLE v9.8.0.

For C++ applications, we use libc++ version 9 provided by clang (we directly compile it

with TrackFM). For large codebases we use WLLVM27 to produce bitcode for the entire

application before passing it to the TrackFM compiler.

GuardOverheads The primary source of TrackFM’s overhead comes from the compiler-

inserted guard instructions at the bitcode level on heap-allocated loads and stores. Table 4.1

shows their costs in cycles relative to local load/store operations. The additional overhead

for a fast path guard relative to a local unmodied load/store (36 cycles) instruction is 21

cycles. This will be the common case for applications that have locality of access. The

uncached slow-path and fast-path guards are more expensive, but better than a page fault.

24commit 9cfc2a

25https://github.com/nilyibo/fastswap, commit 9d5c6f

26https://github.com/AIFM-sys/AIFM, commit aaf711

27https://github.com/travitch/whole-program-llvm
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Table 4.1. TrackFM fast-path vs. slow-path guard costs when a object is local. Costs are
reported in median cycles over 1000 trials.

TrackFM Guard Type Cached Uncached

TrackFM fast-path read guard 21 297

TrackFM fast-path write guard 21 309

TrackFM slow-path read guard 144 453

TrackFM slow-path write guard 159 432

Table 4.2. Comparison of primitive overheads for TrackFM and Fastswap. Costs are re-
ported in median cycles over 1000 trials.

Runtime Event Local Cost Remote Cost

Fastswap read fault 1.3K 34K

Fastswap write fault 1.3K 35K

TrackFM slow-path read guard 453 35K

TrackFM slow-path write guard 432 35K

The slow-path guard is similar in cost to a major page fault in Fastswap when an

object is not present in local memory because both events trigger a remote fetch over the

network. For reference, Table 4.2 compares slow-path guards to remote page fault costs

in Fastswap (both when the page is local and remote). Handling a page fault in the ker-

nel incurs 2.9× the cost of handling a slow-path guard in TrackFM when the data is local.

This changes when the object/page is remote due to Fastswap’s fast RDMA backend, which

outperforms our use of AIFM’s TCP-based backend (from Shenango) when there is not suf-

cient concurrency. However, even with this high-performance networking layer, Fastswap

still provides little benet over our remote slow-path guard. This is due to Fastswap’s page

fault handling overheads (e.g., mapping and cgroups memory reclamation). If we really

instrument every load and store to heap-allocated memory, what would the costs be? To

provide initial intuition, we used TrackFM to automatically transform the STREAM bench-

mark [65], which has a 9GB working set. This transformation produces up to 56 million
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slow-path guards and ∼10 billion fast-path guards. Note that we must pay the cost of these

guards even when objects are local. Neither kernel-based approaches nor library-based

approaches pay such costs for local objects (though AIFM does incur overhead for smart

pointer indirection). Thus, it would seem that these guards present an insurmountable bar-

rier to achieving good performance. However, as we will see in the next Section, TrackFM

can exploit regularity in the workload to dramatically reduce the number of guards.

Mitigating Guard Costs To make compiler-assisted far memory feasible, there are two

paths to increase performance: (1) reduce guard costs and, (2) reduce the number of guards.

We spent signicant effort on (1), making the common case fast-path guard involve a small

number of instructions (only 14). In this Section, we focus our discussion on the second

path.

Loop chunking transformation Loop chunking, described in Section 4.1, eliminates

fast-path guards, a key factor for improving performance. To understand its impact, we

rst evaluate its effects on the STREAM benchmark, which involves sequential access to

arrays of small elements (integers), and is simple to transform. The “Sum” test consists of

a single memory access to an array element (sum+=a2[i]) within a loop. “Copy” con-

sists of two memory accesses (a1[i]=a2[i]) within the loop body. Figure 4.7 shows the

speedup when using the optimized loop chunking transformation relative to the naı̈ve trans-

formation, where every loop element involves a fast-path guard. The total working set size

for both examples is xed at 12GB to aid in comparison. Note that the local memory con-

straint enforced on the application does not include the metadata used by AIFM/TrackFM.

We see that as the number of memory accesses within the loop increases (looking at

the gures top to bottom), the speedup offered by loop chunking increases due to the larger
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Figure 4.7. Speedup from loop chunking improves with increased memory accesses in
loops as more fast-path guards are eliminated.

number of fast-path guards that are eliminated. For example, for “Sum,” we reduce the

fast-path guard count from ∼1.6 billion to zero. Notice that the horizontal axis sweeps the

amount of local memory available to the application, with increasing memory pressure to

the left. These graphs tend to have an inclination towards the right-hand side since in that

regime the system is less network-bound, so the importance of eliminating guard overheads

is amplied.

Improved Loop Chunking To showcase how proling can be coupled with our cost

model from Section 4.2, we automatically transformed a k-means benchmark, which con-

tains many loops for which it would be detrimental to apply the loop chunking transforma-

tion. We run k-means with 30 million points. The working set size is xed at 1GB.

Figure 4.8 shows the results of applying the loop chunking optimization indiscrim-

inately to all loops compared to applying it only to those loops identied as viable candi-

dates by the TrackFM proler, according to our cost model.

Both lines are normalized to the baseline (no loop chunking) to measure speedup.

The gure shows that applying the loop chunking transformation indiscriminately produces

poor results and suffers on average 4× slowdown. This is because k-means has many nested
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Figure 4.8. TrackFM can selectively apply the loop chunking optimization (like in k-means)
to avoid collections with low object density.

loops with a low object density. Such nested loops amplify the cost of loop chunking. In

this case, there were at least 512 array elements per AIFM object. The chunking optimiza-

tion detects 103 array pointers, and after applying the cost model only 27 were optimized.

Applying the cost model to the loop chunking pass here improves the situation consider-

ably, resulting in a mean speedup of 2.5×.

AIFM Parameters The TrackFM compiler must make two primary choices when in-

tegrating with AIFM: the object size and prefetching strategy. This Section explores the

impact of those choices.

Object size TrackFM currently chooses an object size at compile time, though this choice

could in principle be informed by proling. To evaluate the impact of this choice, we

compare two microbenchmarks with different degrees of spatial locality and granularity of

access.

The rst microbenchmark involves accessing a hashmap, much like how a key-
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(a) (b)

Figure 4.9. Impact of object size on STL maps. Fine grained memory accesses with little
spatial locality can benet from small object sizes.

value store would operate. We use the unordered hashmap implementation from the C++

STL. Both keys and values are 4B integers. In this case, the entire C++ STL is transformed

by the TrackFM compiler. The working set size is 2GB. We use a workload generator to

access the hashmap (50 million lookups) according to a Zipan distribution with skew 1.02.

To generate the access trace, we store a sequence of keys sampled from the distribution in a

separate 190MB array also allocated on the heap. In this case, a small handful of the entries

in the hashmap will constitute the majority of accesses, so there will be a high degree of

temporal locality (but little spatial locality), and accesses occur at very small granularities

(4B). The left side (Figure 4.9(a)) shows the impact of varying object size as we sweep the

amount of local memory available, and the right side (Figure 4.9(b)) highlights the impact

for a xed proportion of the working set size available to local memory (25%). We measure

the throughput (MOps/s) of the generated workload. In this case, a smaller object size is

clearly preferable.

If we look again at STREAM, where the access pattern shows almost perfect spatial

locality, we would expect to see different results. Here, we use the “copy” benchmark

from STREAM with a working set size of 9GB. In this case, we measure the far memory
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Figure 4.10. Impact of object size on STREAM. Access patterns with high spatial locality
benet from the choice of a larger object size.

bandwidth (the default metric reported by STREAM). Though the granularity of access

for this example is even smaller (integers), the high degree of spatial locality necessitates

chunking elements into larger objects. In this case, 4KB is the better choice.

Figures 4.9 and 4.10 highlight that proper selection of object size is critical to per-

formance. While we currently make this choice ofine, we envision using proling to make

this choice when application code is recompiled with TrackFM.

Figure 4.11. Speedup of prefetching coupled with loop chunking vs. only loop chunking.
The combinations helps TrackFM extract more performance fromworkloads with spatial
locality.
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Figure 4.12. Speedup on STREAM relative to Fastswap with prefetching and loop
chunking enabled. TrackFM’s memory analysis helps to best exploit AIFM’s high-
performance prefetching.

Prefetching When much of the application’s memory is remote, the costs of remote

fetches can dominate execution time. To mitigate network costs in this regime, TrackFM

must employ prefetching to exploit spatial locality. We again run an experiment on STREAM,

this time with and without prefetching enabled. In this case, we use AIFM’s existing

stride prefetcher, and we prefetch pointers operating on induction variables as identied

by TrackFM’s loop chunking pass. Figure 4.11 shows the speedup of using prefetching

relative to no prefetching as we sweep the amount of local memory available. The loop

chunking optimization discussed previously is enabled in both cases. If we focus on the

left-hand side of the gures (where remote costs dominate), we see a large impact (almost

5×) on overall performance. As more local memory is available, the cost of guards domi-

nate, so the impact of prefetching reduces. We validated this with experiments (not shown

for space) that demonstrate that the relative number of critical remote fetches, i.e., the num-

ber of loads/stores blocked by rst having to fetch the object from remote memory when

prefetching is disabled, is reduced dramatically with prefetching.

Figure 4.12 shows the speedup relative to Fastswap on STREAM when we apply

both chunking and prefetching. TrackFM performs ∼2.7× better than Fastswap for Sum,

and ∼2.9× better for Copy. In this case, Fastswap is limited by its page fault costs, and
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by its weaker ability to discern high-level knowledge about the access pattern. Note that

AIFM could achieve similar (even slightly better) performance here, but would require

programmer modications.

Mitigating I/O Amplication One of AIFM’s major goals is to reduce I/O amplica-

tion, i.e., the unnecessary localization of unused memory, for workloads that access mem-

ory at ne granularity. Can TrackFM achieve the same goal? Figure 4.13(a) recreates our

hashmap example, which will be sensitive to I/O amplication due to the small key/value

pair sizes (4B). This time we show how overall performance is highly correlated with the

amount of data transferred. We see how the smaller object size chosen by TrackFM sig-

nicantly reduces the amount of data transferred over the network relative to Fastswap,

which uses the standard 4KB page size. Fastswap transfers 43× the working set size for

the hashmap, while TrackFM amplies the working set by only 2.3× (the 64B object size

chosen here is still larger than the key/value pairs). The net effect of reducing I/O ampli-

cation in this case is an average speedup of 12× relative to Fastswap. Though AIFM can

achieve similar or higher speedups with programmer effort, this involves porting libc++

(457 KLOC) to AIFM, a non-trivial task.

Just the array storing the access trace for the keys requires 190MB, and with local

memory constrained to 5% of total application memory (only 128 MB), we see high mem-

ory pressure, resulting in many object evacuations and swap-ins. Thus, we see an inated

execution time (∼200s) for the rst point to the left of Figure 4.13(a).

Application Benchmarks How do injected guards, remote costs, and our optimizations

translate to overall application performance? We explore this question with two application
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(a) (b)

Figure 4.13. Applications that access memory at small granularities suffer when limited by
the architected page size.

benchmarks. The rst is a data analytics workload taken from Kaggle 28 that analyzes New

York City taxi trips. We adapted this benchmark from AIFM to validate our results against

that paper [1]. The second application is memcached [66], a commonly used in-memory

key-value store. We also evaluate several benchmarks from the widely used NAS suite [67].

Analytics Application The analytics application has a working set size of 31 GB. We

compare the performance of the application automatically transformed with TrackFM to

the same application running on Fastswap and AIFM. This analytics application builds

on a custom C++ dataframe library, and while we can correctly transform this library,

our loop optimizations will not work efciently due to C++ semantics such as exception

handling, which the existing loop analysis in NOELLE has no support for. We concluded

that supporting/extending NOELLE to support such C++-specic semantics would require

engineering effort not justied by the research value added. Instead, we ported the original

28https://www.kaggle.com/code/kartikkannapur/
nyc-taxi-trips-exploratory-data-analysis/notebook
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(a) (b)

Figure 4.14. Performance of analytics application on TrackFM vs. Fastswap and AIFM.
The left (a) shows overall performance normalized to a setup with only local memory,
varying the amount of local memory available to the application. The right (b) shows
the number of guard checks for TrackFM and page fault events for Fastswap. With less
local memory, the page fault cost for Fastswap is amplied.

C++ dataframe library used in that paper to C, and the results reported for the analytics

workload use the C dataframe library.

Figure 4.14 shows that when the available local memory is constrained, TrackFM

comes within 10% of AIFM’s performance, reaching near parity. Fastswap’s performance

converges when remote costs stop dominating, when roughly 75% of the working set ts

in local memory. To explain these results, we measured the number of major (remote) page

faults in Fastswap and the number of slow-path guards injected by TrackFM. We see that

the page fault count (page faults imply one-sided RDMA operations in Fastswap) is rela-

tively much higher than TrackFM guards; both event counts strongly correlate with overall

performance. The analytics application consist of many column scan operations, which

involve tight loops with almost no temporal locality but a high degree of spatial locality.

TrackFM can exploit this to eliminate much of the guard costs, and also benets from the

AIFM runtime. How impactful is our loop chunking optimization here? Figure 4.15 breaks

down the performance loop chunking, with loop chunking applied to all loops, and with it
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Figure 4.15. Applying the loop chunking optimization to low density objects in the analyt-
ics application reduces performance.

applied only to candidate loops identied by our cost model. This application has several

aggregation operations that involve loops that iterate over small collections of table rows

(low object density), so applying the model here clearly has benets for reducing guard

costs.

Memcached In-memory key-value stores represent another end of the access pattern

spectrum. Here, access patterns tend to show much less spatial locality, and the granu-

larity of access tends to be quite small, thus there is signicant sensitivity to I/O amplica-

tion. We use TrackFM to automatically transform memcached version 1.2.7 to run as a far

memory application.

We use key/value pair sizes based on the USR distribution [68]. The working set

size for memcached is 12GB, and we constrain the local memory to 1GB. We use a work-

load generator to create get operations on a Zipan-distributed set of 100M keys. We mea-

sure the overall throughput for all get operations. Figure 4.16 shows the results. TrackFM

shows a ∼1.7× improvement over Fastswap when the skew parameter for the access distri-
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(c)

Figure 4.16. Key-value stores with small object sizes and little spatial locality suffer from
I/O amplication in Fastswap.

bution is between 1.01 and 1.04. As the access distribution becomes more skewed, we see

an average speedup of 1.3× over Fastswap. As the skew parameter increases, Fastswap’s

performance converges due to increased temporal locality, which helps to amortize its page

fault costs. While not shown in the gure, as we increase the amount of memory on the

local node, Fastswap will converge with an even smaller skew, since more hot keys in the

working set can t on the local node. In this regime, TrackFM’s fast-path guards become

expensive, as they are not amortized like page faults. As the access distribution becomes

less skewed, however, TrackFM outperforms Fastswap due to reductions in I/O amplica-
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Table 4.3. NAS benchmarks (C++ versions) run on TrackFM.

Benchmark Class Memory (GB) LoC

CG (conjugate gradient) D 9 586

FT (3D FFT) C 6 756

IS (bucket sort for integers) D 34 558

MG (PDE solver with multigrid method) D 27 941

SP (PDE solver with scalar penta-diagonal method) D 12 2013

tion. We verify this by measuring the total data transferred over the network. Figure 4.16(c)

shows that Fastswap, limited by the architected page size, transfers 66× the working set

size, much of which is unnecessary since the key-value pair sizes are small. In contrast,

TrackFM benets from small object sizes and transfers only 15× the working set.

(a) (b)

Figure 4.17. NAS benchmarks congured with a local memory size of 25% of the applica-
tion working memory. Performance is normalized to local memory.

NAS benchmarks We use a reference C++ implementation of the NAS serial benchmark

suite [69], and select a limited subset (details shown in Table 4.3) due to time constraints.

Figure 4.17(a) shows TrackFM outperforming Fastswap for most benchmarks, where page

faults are the limiting factor for Fastswap. FT is a notable outlier where TrackFM per-

forms poorly. First, the FFT implementation in NAS has a particularly friendly access
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pattern for Fastswap involving good temporal reuse, allowing it to amortize its page fault

costs. Further investigation revealed that TrackFM is also injecting an exceptionally large

number of guards for FT. We found that the deeply nested, tight loop structure used in FT

confounds our loop analysis, resulting in the high guard count. However, we found that

this is mainly an artifact of the default analysis pipeline in NOELLE. By default, NOELLE

sees unoptimized code from LLVM. However, in our case, it makes more sense to accept

pre-optimized code in NOELLE to minimize the number of guards that are injected. For

example, redundant code elimination or dead code elimination can reduce the number of

loads and stores and thus the number of guards. We veried this in Figure 4.17(b), where

we perform the chain of optimizations included in the “O1” set before the TrackFM passes

(TFM/O1). This results in a 6× reduction in memory instructions for FT, and a 4× re-

duction for SP, dramatically reducing guard overheads. This experiment led us to change

NOELLE’s default optimization pipeline order for use with TrackFM.

Compilation Costs TrackFM increases generated code size by an average of 2.4× rela-

tive to the original binary. This increase is roughly proportional to the number of memory

instructions in the program, each of which is expanded into a guard with the standard trans-

formation. TrackFM’s compile time is under 6× compared to standard LLVM, though we

have not yet focused effort on reducing compilation overheads.

4.4 Discussion

Section 4.3 showed that the compiler-based approach holds promise. We now

attempt to convey some hard-earned insights from our work, its limitations, and future

prospects.

Lessons We spent signicant effort engineering the guards to be lightweight. This did pay

off, but we were surprised to nd that exploring ways to eliminate guards entirely was the
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more fruitful path, though this is somewhat obvious in retrospect. We were also surprised

how well kernel-based approaches perform when there is sufcient temporal locality. This

is because page fault costs are quickly amortized when there is repeated access. Even in

this scenario, however, they are still sensitive to I/O amplication. This suggests that a

hybrid approach (compiler and kernel) holds promise.

Understanding the high-level semantics of access patterns (i.e., access over an ar-

ray, or a list, etc.) is critical for performance. We expect greater benets when we can

capture information about recursive data structures [70]. Finally, we found that in some

cases, application code optimized for locality of reference can actually confound efforts

by the compiler to derive ne-grained information about the access pattern. For example,

memcached uses an optimized slab allocator that batches small allocations, thus grouping

together small objects into large chunks. This actually limited TrackFM’s ability to miti-

gate I/O amplication; TrackFM could have more effectively transformed this application

had it performed small allocations in the naı̈ve way.

Hardware Support The overhead of TrackFM’s guards could be improved with new

hardware extensions. In the limit, the hardware can interpose on remote accesses and

track dirty objects on its own, for example by extending the cache coherence engine (as in

Kona [71]). However, while this approach is attractive from the standpoint of transparency,

it forgoes the benets of the high-level knowledge available to the compiler. An extension

more appropriate for TrackFM might involve hardware that the compiler could manage,

e.g., a lightweight, sub-page triggering mechanism that vectors directly to user-space (in

contrast to the existing userfaultfd mechanisms in Linux [72]). This might, for example,

look like a software/hardware stack built atop range translations [73] and user-level fault

handling.29

29As in Intel’s user-level interrupt vectoring introduced in the Sapphire Rapids mi-
croarchitecture [74]
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Limitations and FutureWork The impact of AIFM’s object size parameter is workload-

dependent, so users must currently choose it. We believe it would be fairly simple to re-

move this engineering limitation by using autotuning, as discussed in Section 4.2. Since

TrackFM operates at the level of LLVM IR, information about application semantics (e.g.,

recursive data structures) is mostly lost. We plan to explore inter-procedural data structure

analysis [75] to capture these semantics. There is also opportunity for languages whose

memory semantics more closely match those of far memory, such as Rust, whose own-

ership model maps well to the notion of locality. High-level parallel languages, where

ownership can fall out of language semantics [76], and partitioned global address space

(PGAS) languages [77] could also map to compiler-based far memory.

Fetching remote data just to perform trivial computations is unwise. AIFM over-

comes this by allowing library developers to manually ofoad such lightweight computa-

tions onto the remote node, thus employing near-data processing. We believe TrackFM

could employ static analysis techniques, such as automated amortized resource analy-

sis [78, 79], to achieve the same goal. TrackFM could also benet from a proling stage

that prunes the set of heap allocations available for remoting based on access frequency. For

example, the MaPHeA framework leverages hardware performance monitoring to enable

prole-guided optimization (PGO) to effectively place heap-allocated objects in heteroge-

neous memory [80]. Though this framework is built on gcc, we suspect incorporating a

similar approach into the TrackFM middle-end transformations would be straightforward.

4.5 Conclusion

We demonstrated that the compiler-based approach to far memory is a feasible path

to automatically transform applications on software-based memory disaggregated systems.

We realized the compiler-based approach with a prototype system called TrackFM, and

demonstrated how it can outperform the kernel-based approach by up to 2× by merely

recompiling the application. Its performance comes within 10% of the best performing
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library-based approach, AIFM, but requires no modications to application code. TrackFM

simultaneously achieves programmer transparency and good performance by leveraging

novel compiler analysis and transformation techniques, and by using the highly-optimized

AIFM runtime as a backend.
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CHAPTER 5

CARDS: ENABLING POLICY DECISIONS DYNAMICALLY ON SOFTWARE
DISAGGREGATED SYSTEMS

Chapter 4 demonstrates how compilers can automatically port applications to soft-

ware memory disaggregated systems, thereby improving developer productivity. How-

ever, in TrackFM, many runtime policies, such as determining which objects should be

remotable, were decided at compile time. Since the compiler lacks runtime information,

TrackFM was forced to adopt conservative policies. For example, in TrackFM, all objects

were assumed to be remotable. In this chapter, we present CARDS, a system that combines

static and runtime information to determine far memory policies dynamically at runtime,

without the need for proling or making conservative decisions at compile time. CARDS

stands for Compiler Assisted Remote Data Structures. Our approach builds on principles

from library-based methods to determine far memory policies dynamically, with the key

distinction that it is fully automatic and does not require any source code changes.

We summarize our contributions as follows:

• We demonstrate how compiler analysis can be combined with the runtime to auto-

matically detect and transform data structures into remote data structures.

• We are the rst to demonstrate how policy decisions can be made per data structure

dynamically without the need for source code changes or proling in far memory

architectures.

• We demonstrate several policies to determine the selection of remotable data struc-

tures using information available to the compiler.

• We report on an extensive performance evaluation of CARDS using numerous micro

benchmarks and real world applications.
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5.1 CARDS Design

Existing legacy data structures can under perform in far memory architectures due

to architectural mismatches, which differ substantially from single server systems [81]. A

library-based approach like AIFM addresses this challenge by building custom remote data

structures that have dedicated prefetching and remotable policies. However, the benets of

using custom remote data structures come at the cost of modifying an existing application.

Prior work in far memory compilers like TrackFM and Mira addresses application modi-

cation by using static analysis and transformation, but the far memory policies in these

systems are determined conservatively or necessitate the use of proling. Our goal with

CARDS is to enable proling as a fallback when static analysis misjudges far memory pol-

icy decisions, allowing for more accurate, dynamic adjustments per data structure. Through

its integration of compiler-identied data structures with runtime information, CARDS re-

moves the need for manual application modications or additional proling efforts.

There are two fundamental challenges in using compilers to automatically trans-

form existing application data structures into remote data structures. The rst challenge

is the loss of information that occurs when source code is compiled down to LLVM IR.

The LLVM type system does not recognize user-dened data structure types, resulting in

the loss of information about source code data structures. In particular, for a given load

or store operation in LLVM IR, there is no direct way to determine which data structure

the operation corresponds to. Identifying an application data structure enables the com-

piler to supply the runtime with both the data structure’s access patterns and its memory

allocations.

Our approach overcomes this limitation by building on prior work in inter-procedural

data structure analysis (DSA) [44, 45]. Originally, DSA was designed to identify connec-

tivity between memory objects across the entire program. Unlike shape analysis, which fo-

cuses on classifying data structures [44], DSA primarily concerns itself with how memory
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objects are connected within a program, thus improving compilation times for the analysis.

In previous work, DSA has been used to capture properties of memory objects, such as

determining whether they are type-safe or understanding how they relate to one another.

In our work, we leverage DSA to automatically identify disjoint data structures, enabling

their transformation into remotable data structures [45, 82]. Additionally, DSA is context-

sensitive, meaning it can identify specic instances of a data structure. This capability

is particularly useful for our purposes, as it allows us to assign unique prefetching and

remotable policies to each instance.

To effectively enforce our policies for each data structure at runtime, we need a

way to link the compiler-identied data structures to the application’s allocation requests

and memory access patterns. For example, during a memory allocation request, such as

malloc, CARDS must determine which application data structure initiated the request to

decide if it should be remotable. Fortunately, prior work on pool allocation [82] demon-

strates how disjoint memory pools can be passed to the runtime by leveraging data structure

analysis. Specically, the pool allocation technique partitions heap data structure instances

into pools and passes pool handles to the runtime, allowing for memory optimizations

tailored to the data structure instances. In CARDS, we implement this pool allocation

technique to establish far memory policies for each data structure.

The second challenge is that the allocation size of data structures are not always

known at compile time. In CARDS, we develop policies that are co-designed with the

runtime to address the lack of runtime information at compile time. For example, the policy

for determining whether a memory allocation should be remotable is evaluated at runtime

in CARDS. This is done by using compiler data structure information to identify the data

structure responsible for the allocation, while also considering runtime details about the

available local memory to decide if the allocation should be remotable.

Figure 5.1 describes the architecture of CARDS, where a developer is only re-
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Figure 5.1. Users recompile their code with CARDS, resulting in an automatically trans-
formed application that runs on a far memory cluster.
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quired to compile their application with the CARDS compiler. We describe in detail on the

CARDS compiler and runtime implementations in Section 5.2. Below, we outline some

of the key design components of the CARDS system. The primary policies that affect

data structures in far-memory architectures include the remotable policy, which determines

whether a data structure’s memory can reside on a remote server; the prefetching policy,

which decides which objects to prefetch based on the data structure’s access pattern; and

the evacuation policy, which identies which objects can be moved to the remote server for

a data structure. In this paper, we focus on the rst two: remotable and prefetching policies.

The remaining policies will be integrated into the CARDS framework in the future.

Each data structure identied by the CARDS compiler is assigned its own prefetch-

ing and remotable policy. CARDS leverages static and runtime information available for a

given data structure to determine whether a memory allocation request should be a candi-

date for remote memory. If a memory allocation is not a candidate for remote memory, then

accessing a given memory address will not incur any network overheads and can eliminate

memory safety checks (guards) , which are required to ensure safe access to an object.

A good selection of data structures will reduce network overheads and enable ap-

plications to run efciently on far memory systems. Previous far memory compilers do not

support this capability during runtime, instead they rely on proling to make this choice

or adopt a conservative approach (i.e., all objects are marked remotable). We will see later

in Section 5.2 that having a conservative remotable policy where all objects are marked

remotable, can incur high network and static instrumentation costs. The primary goal of

CARDS is to demonstrate that we can determine efcient remotable policies for each data

structure at compile time, without relying on runtime information about the size of a data

structure, which previous far-memory compilers have failed to achieve.

CARDS applies different prefetching algorithms to individual data structures. By

isolating these data structures during compilation, CARDS makes it easier to implement
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prefetching, since the algorithms only need to focus on the specic data structure with-

out worrying about unrelated memory accesses. Additionally, CARDS allows switching

between prefetching algorithms based on static or runtime information. The prefetching

manager uses compiler data, such as detecting whether a data structure has a sequential

access pattern, to choose the best prefetching strategy. This approach takes advantage of

the compiler’s ability to separate disjoint data structures, improving the effectiveness of the

prefetching algorithms.

5.2 Implementation

We rst outline the compiler passes in CARDS that automatically detect applica-

tion data structures and transforms them into remote data structures. Following this, we

describe the remotable and prefetching policies implemented in CARDS, which do not

require application modications or proling.

Listing 5.1 contains two data structures (ds1, ds2) that are being initialized, with

ds2 specically being initialized within a loop. We use this example to demonstrate how

the CARDS compiler and runtime information are combined to automatically transform

data structures and make appropriate policy decisions dynamically at runtime, as discussed

in the following sections.

5.2.1 Compiler optimizations.

CARDS utilizes NOELLE to build its compiler passes [58]. NOELLE offers high-

level, program-wide abstractions built on top of LLVM IR [59], which signicantly reduces

the time needed to develop compiler analyses and transformations in LLVM.

DSA Pass CARDS leverages SeaDSA [45] in order to automatically detect disjoint data

structures within an application. The data structure analysis in SeaDSA is inter-procedural

and context-sensitive, enabling it to capture more data structures than the original DSA [82].
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Figure 5.2. DSA for Listing 5.1

Figure 5.2 shows the disjoint data structures identied for Listing 5.1 by the CARDS com-

piler. Notably, only heap-allocated data structures are identied by our analysis.

Listing 5.1. Example C code with 2 data structures initialized

int * ds1, * ds2;

double * alloc() {

return malloc(ARRAY_SIZE);

}

void main() {

ds1 = alloc();

ds2 = alloc();

Set(ds1, 0);

Set(ds2, 1);

for (int k=0; k<NTIMES; k++)

Set(ds2, k);

}

void Set(int * ds, int val) {

for (j=0; j<ARRAY_SIZE; j++)

ds[j] = val;

}
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Pool Allocation After identifying disjoint data structures, then CARDS transmits this

data structure information to the runtime by utilizing the pool allocation algorithm 1. We

re-implement pool allocation within the NOELLE framework, because the original imple-

mentation of the pool allocation algorithm [82] had not been maintained for newer compiler

versions. Unlike the original Pool Allocation Algorithm, which employs bottom-up inter-

procedural analysis to identify disjoint data structures, CARDS uses context-sensitive dis-

joint data structures identied by DSA and passes them to the pool allocation algorithm 1.

The Pool Allocation algorithm 1 is used to initialize data structures and link memory alloca-

Algorithm 1 Pool Allocation Algorithm [82]
1: for all  ∈ functions() do
2: seadsa::graph G = DSAGraphForFunction(F)
3: for all  ∈ Nodes() do
4: if (. ==   ()) then
5:  ℎ ← (, )
6: () ←  ℎ
7: () ← argnodes(F) {}
8: else// Node is local to fn
9:  ℎ ←   (, )

10: () ←  ℎ
11: end if
12: end for
13: end for
14: for all  ∈ functions() do
15: for all  ∈ instructions() do
16: if     then
17: replace I with dsalloc(size,dsmap(N(ptr)))
18: else if    then
19: for all  ∈ ArgNodes() do
20: (( (, , )))
21: end for
22: end if
23: end for
24: end for

tions to their corresponding data structures. It works in two phases. In the rst phase (lines

1–13), the algorithm modies functions in the program that might allocate memory on the

heap. This includes both direct calls to malloc and indirect calls that eventually lead to

malloc The algorithm uses a map, dsmap, to track a handle for each data structure. If a
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function returns a pointer or passes it outside the function (escaping pointer), the algorithm

adds extra arguments to the function to handle the data structure properly. If the pointer

does not escape, the algorithm calls the CARDS runtime to initialize the data structure, and

the handle is saved in dsmap. In the second phase (lines 14–24), the algorithm updates

the functions to include the data structure handles from dsmap as arguments. This ensures

that any function that calls the modied functions from the rst phase knows which data

structure it is working with, so memory can be managed correctly at runtime. For more

details on pool allocation, see the Pool Allocation paper [82].

Listing 5.2. CARDS pool allocation compiler transformation for Listing 5.1

...

double * alloc(int DH) {

return cards malloc(ARRAY SIZE, DH);

}

void main() {

...

//ds_init(ds_id, cache_policy, prefetch_policy,

remote_policy)

int dh1 = ds init(1, false, STRIDED, REMOTABLE);

int dh2 = ds init(2, true, STRIDED, LOCALIZE);

ds1 = alloc(dh1);

ds2 = alloc(dh2);

...

}

...

Additionally, similar to the Pool allocation algorithm, we manage indirect pointers

by utilizing equivalence classes, as described in [82]. Each disjoint data structure identied

by the compiler receives a unique identier known as the data structure handle, which
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the runtime uses to differentiate between various data structures and dynamically apply

policies for each one. At runtime, each identied data structure has its own prefetching

manager and specic remotable policy. Additionally, when a data structure is created, we

pass supplementary information, such as its “hotness” based on usage in functions, by

employing compiler call graph analysis on strongly connected components. This approach

enables the runtime to utilize compile-time information when determining the remotable

and prefetch policy for each data structure.

Listing 5.2 illustrates how CARDS pool allocation transforms Listing 5.1 and em-

ploys pool allocation to segregate data structures with different prefetch and remotable

policies. Each data structure is assigned a unique handle, DH, that is appended to the non-

canonical bits of a pointer, facilitating the mapping of addresses to their corresponding data

structures.

Prefetching analysis In this pass, we gather application type information within LLVM

IR and utilize induction variable analysis to identify sequential access patterns. The CARDS

compiler analysis operates at the level of individual data structures, with each data struc-

ture assigned its own prefetch policy. Figure 5.2 highlights the data structures with strided

access patterns identied at compile time for Listing 5.1.

Redundant Guard Elimination In a far memory system, memory accesses to data struc-

ture objects can take place either when the objects are located in local memory or in remote

memory. In line with previous far memory compiler systems, CARDS automatically in-

serts guard checks on memory instructions to ensure memory safety. Like TrackFM [42],

CARDS employs static analysis to eliminate unnecessary guards. However, TrackFM com-

piler optimizations rely on induction variables to eliminate guards which do not work for

recursive data structures such as linked lists and hash maps. In contrast, CARDS can elim-
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Listing 5.3. CARDS redundant guard elimination transformation for Listing 5.1

void Set(int * ds, int val) {
for (j=0; j<ARRAY_SIZE; j++) {

if ((&ds[j] < ds lb) | | (&ds[j] > ds ub)) {

ds addr = cards deref addr(&ds[j])

update bnds(&ds[j], ds lb, ds ub);

}

*ds_addr = val;
}

}

inate redundant guards even for recursive data structures by employing temporary stack

variables for each data structure. These variables monitor pointer accesses and record the

lower and upper bounds of objects that have already been localized. When accessing an

object within a given data structure, CARDS rst checks if this object has been resolved

previously. If it has, the resolved object address is used directly; otherwise, the runtime is

invoked. We only inject a call into the runtime when the bounds for an object are deemed

invalid.

Listing 5.3 presents the pseudocode for CARDS’s loop transformation applied to

Listing 5.1. Additionally, we have found that the O3 compiler passes, such as mem2reg,

can often promote these temporary stack variables (ds_lb, ds_ub) to registers for many

applications, further reducing the overhead associated with guard checks.

Selective remoting One of the challenges in selectively marking data structures as re-

motable (described in Section 5.1) is that the size of a dynamic data structure is not always

known at compile time or during runtime memory allocation (resulting in partial infor-

mation). This knowledge is crucial to prevent the localization of data structures whose

memory sizes exceed the capacity of a single server. Listing 5.4 demonstrates our trans-

formation applied to Listing 5.1. Before executing a loop, the CARDS compiler injects

a call into the runtime to check whether the data structures used within the loop are re-
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motable. If all the data structures are marked as non-remotable, the execution branches to

the uninstrumented version.

Listing 5.4. CARDS selective remoting compiler transformation for Listing 5.1

void Set(int * ds, int val) {

remote = check remotable policy(ds); //loop v1

if (remote) {

for (j=0; j<ARRAY_SIZE; j++) {

if (safe to access(&ds[j]))

ds[j] = val;

}

}

else {

for (j=0; j<ARRAY\_SIZE; j++) //loop v2

ds[j] = val;

}

}

The advantage of treating data structures as non-remotable is that they can execute locally

without any instrumentation. However, this approach is not always feasible at compile time

due to a lack of runtime information. Since the memory layout of the data structure is not

known at compile time, it is impossible to determine whether the data structure should be

marked as remotable during compilation. This limitation can be mitigated through proling

or using techniques like loop peeling, where certain iterations of a loop are peeled out.

These peeled iterations can be used at runtime to help decide whether the larger loop should

be remotable. However, determining the number of proling runs or loop iterations needed

to make an accurate decision is not always straightforward. Instead, in CARDS, we use

code versioning by maintaining two versions of the code: one that is instrumented and
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Table 5.1. Comparison of primitive overheads for CARDS and TrackFM. Costs are re-
ported in median cycles over 100 trials.

Runtime Event Local Cost Remote Cost

CARDS read fault 378 59K

CARDS write fault 384 59K

TrackFM read guard 462 46K

TrackFM write guard 579 47K

another that is not. The uninstrumented version is selected only if all data structures are

localized, ensuring that unnecessary instrumentation is avoided when not needed.

5.2.2 Runtime.

CARDS utilizes a modied version of the AIFM runtime to manage far memory ob-

jects at the granularity of data structures. During compile time, CARDS identies disjoint

data structures and assigns each a unique data structure ID, which is employed at runtime,

as illustrated in Listing 5.2. The data structure ID is appended to the non-canonical bits of

pointer addresses during memory allocation calls to manage these associations. CARDS

monitors cache hits and misses for each memory object, leveraging these statistics on a per-

data structure basis to inform runtime policy decisions. Unlike previous compiler-based far

memory systems, CARDS allows policy decisions such as prefetching and remotability at

the individual data structure level, offering ner control over memory management.

Additionally, CARDS employs a customized version of the standard libc library to

link memory addresses with specic data structures. Listing 5.2 demonstrates how CARDS

transforms memory allocations and incorporates ds_init calls. The ds_init method

is injected before any memory object associated with a given data structure is accessed,

utilizing reachability analysis within the CARDS compiler pass. These data structures are

initialized in the order they appear in the program by invoking the ds_init method,

which congures each data structure according to the policies informed by the compiler.
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Figure 5.3. CARDS guard lowered to x64 code

CARDS guards CARDS manages far memory at the object level, allowing for objects

of arbitrary sizes to reside in either local or remote memory. To ensure memory safety, it is

essential to localize an object before access. This safety is achieved in CARDS by injecting

guards on memory accesses to data structure objects.

In CARDS, an object may map to multiple addresses, determined by its size. The

size of an object is guided by compiler hints provided to the runtime during the data struc-

ture initialization process (ds_init). For instance, a declaration like char ds[4096]

could correspond to a single CARDS object if the object size for the data structure is set

to 4K. Consequently, CARDS data structures can have varying object sizes based on the

static hints given by the compiler.

Figure 5.3 illustrates a CARDS guard check. If a memory address has its non-

canonical bits (bits 48-63) set (known as a custody check), CARDS injects a call to the

cards_deref function. The cards_deref function is responsible for ensuring

memory safety within CARDS. This function rst maps the higher-order address bits to

their corresponding data structure and then uses the lower address bits to associate with

the actual object. Following this mapping phase, the system checks whether an object is

localized; if it is not, CARDS calls into the AIFM runtime to fetch the object.

The CARDS compiler injects guard checks once for every object access within a

loop. If multiple memory locations map to the same object, a check occurs only once,

thanks to the redundant guard optimization described above.
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Listing 5.5. CARDS deref function

uint64_t cards_deref(uint64_t addr) {
//get ds handle from non canonical bits
uint64_t ds_id = (addr >> ORT_POS);

DS * ds = ds_list[ds_id];
//map address to object
uint64_t ind = off >> ds->obj_shift;
FarMemPtr * obj = ds->pool_manager->ptrs_[ind];

//if object already in local memory
if (safe_to_access(obj))

return obj.paddr;

//fetches object over the network
LocalizeObject(ds, ind, obj);
return obj.paddr;

}

Remotable policy selection CARDS manages local memory by dividing it into two cat-

egories: pinned memory, which cannot be remoted, and remotable memory, from which

data structures marked as remotable are allocated. The system uses a custom libc library

to control memory allocations, associating each allocation with a specic data structure.

During a memory allocation, CARDS evaluates static information about the data structure,

provided by the compiler, to determine if the memory should be allocated from remotable

memory.

The main challenge in deciding whether a data structure should be non-remotable

is that its “hotness” (locality) and size may not be known at compile time. This uncertainty

makes it difcult to determine which data structures should be localized. Previous com-

piler approaches have addressed this by using proling to determine the hotness and size

of memory objects, and then, based on this information, deciding whether these objects

should be placed in remotable memory. For instance, Mira [43] uses a memory proler to

determine allocation sizes, and only objects with large sizes are further analyzed to decide

their memory policy.
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However, without proling, determining the hotness of data structures is difcult.

Since the locality of a data structure often depends on the program’s input, it is hard to

predict at compile time. In CARDS, we attempt to approximate this “hotness” using sev-

eral policies. We consider a data structure hot if it has a long lifetime or is accessed fre-

quently in memory operations. These policies do not rely on data structure size and use

a tunable threshold, k, to decide what percentage of data structures should be allocated to

non-remotable memory. Ideally, k is set higher when more local memory is available and

lower when memory is limited, making the approach more dynamic and adaptable.

Below, we outline several policies that can improve the selection of data structures

to be localized based on static information:

Linear Assignment This policy allocates pinned (non-remotable) memory sequentially

in program order. When local memory is exhausted, it switches to using remotable memory.

Random Assignment This policy allocates pinned (non-remotable) memory randomly

across memory allocations.

Maximum Reach of Data Structures This policy targets data structures used in func-

tions with longer lifetimes, marking them as local (non-remotable) during compilation. We

estimate lifetime by identifying data structures accessed by the top k functions with ex-

tensive caller/callee chains. CARDS uses the strongly connected components (SCC) call

graph to track which functions access a data structure. If pinned memory becomes full,

CARDS will fall back to using remotable memory.
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Maximum Uses of Data Structures

 =  (# +#  )

This policy focuses on data structures that are accessed most frequently in memory op-

erations, such as loads and stores, within loops and functions in LLVM IR. These data

structures are marked as non-remotable candidates. The top k most frequently accessed

data structures are then designated as non-remotable to ensure that frequently used data

remains local.

Due to limited runtime information, it is sometimes impractical to make accurate

decisions about remoting at compile time. To address this, the CARDS runtime can over-

ride static hints as needed. For example, if a data structure does not t in local memory

despite a static hint for localization, the runtime may choose to remote it. In cases where

dynamic data structures gradually grow during execution, the runtime tracks allocations to

ensure they remain local. This allows certain code paths to execute without instrumentation

for non-remotable data structures. When a data structure is remoted, CARDS automatically

switches to an instrumented code path.

In Listing 5.1, we observe that ds2 has a higher usage than ds1 and benets more

from localization. By implementing the policy that prioritizes data structure usage, CARDS

can make more informed decisions; using the linear policy may lead to suboptimal choices.

In Figure 5.4, we compare various policies for Listing 5.1, allowing one of the data struc-

tures to be localized based on compiler policy by setting k = 50%. Both data structures in

Listing 5.1 are allocated 3GB of memory. When 50% of local memory is available, one of

the data structures can be localized. A naive policy would localize ds1, while a rened

policy correctly localizes ds2, resulting in improved performance by minimizing network

communication, as shown in Figure 5.4.
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Figure 5.4. CARDS performance across different remotable policies for Listing 5.1 when
top k=50% of data structures are marked as non-remotable.

Prefetching Policy Selection A variety of prefetching policies are available, each differ-

ing in complexity, specicity, and aggressiveness. For CARDS, we have chosen to support

existing compiler prefetchers, including a majority stride-based prefetcher, a greedy re-

cursive prefetcher, and a jump pointer prefetcher [83]. Based on the static and dynamic

information available for each data structure, CARDS selects the most appropriate prefetch

policy. Standard prefetching metrics, such as accuracy and coverage, are used to evaluate

the effectiveness of each prefetching policy. The combination of static and dynamic infor-

mation per data structure creates exciting research opportunities for advancing prefetching

algorithms within CARDS.

5.3 Evaluation

CARDS combines static and runtime information to determine optimal far-memory

policies for each application data structure. Our evaluation assesses the performance im-

pact and advantages of combining compiler and runtime optimizations at the granularity

of data structures, enabling informed decision on remotable and prefetching policies, using

micro benchmarks. We then demonstrate that CARDS serves as a viable, non-proling al-
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ternative, outperforming conservative methods while maintaining acceptable performance

relative to proling-based approaches. Our evaluation aims to address the following ques-

tions:

• How do CARDS remotable policies benet applications? (§5.3.1)

• How do CARDS prefetching policies benet applications? (§5.3.2)

• How does CARDS perform on realistic applications? (§5.3.3)

Experimental setup We conducted our experiments on CloudLab [64] using two x170

machines with 10-core Intel Xeon E5-2640v4 CPUs clocked at 2.40 GHz, 64GB RAM and

a 25 Gb/s Mellanox ConnectX-4 NIC. We used Ubuntu 18.04 with Linux kernel version

5.0 and DPDK version 18.11 (used by AIFM). CARDS builds on LLVM version 14.0.6, 30

with NOELLE v14.1.0.31 For large codebases we use WLLVM32 to produce bitcode for

the entire application before passing it to the CARDS compiler.

Applications We select three benchmarks to evaluate CARDS, among which the analyt-

ics benchmark and BFS represent common access patterns in datacenters.

NYC analytics is a data analytics application that uses the 2014 NYC taxi trip

dataset from Kaggle 33 to analyze New York City taxi trips. We choose this benchmark

to compare against existing far-memory compilers (both proling and conservative) and

validate our results against TrackFM [42]. For the proling the Mira compiler, we were

30commit f28c006

31commit 68f334a

32https://github.com/travitch/whole-program-llvm

33https://www.kaggle.com/code/kartikkannapur/
nyc-taxi-trips-exploratory-data-analysis/notebook
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unable to reproduce the NYC benchmark due to the incomplete Mira implementation34;

instead, we use a projected curve based on the results from their paper [43]. The memory

working set size for the taxi-trip workload was 31GB, and the dataset size was 16GB.

Next, we choose a widely used benchmark suite, PolyBench, which is a collection

of benchmarks with static control parts [84]. Within PolyBench, we select ftfdapml (Finite

Difference Time Domain Kernel using Anisotropic Perfectly Matched Layer), which is

used to simulate optical devices and model electromagnetic wave interactions with materi-

als. We select ftdapml because it has the largest number of data structures in the PolyBench

suite, making it useful for evaluating remoting policies in CARDS. The memory working

set size of ftdapml is 8GB.

Finally, we select BFS, a graph processing workload commonly used in datacen-

ters. BFS is characterized by an irregular access pattern, which is typical of datacenter

workloads. We use the BFS benchmark from the GAPS benchmark suite [85]. The mem-

ory working set size for BFS is 1.2 GB.

5.3.1 Evaluation of CARDS remoting policy.

In far memory systems, ideally, hot data structures should not be remotable (i.e.,

they should use pinned local memory) to avoid the cost of network fetches and to mitigate

guard costs. However, marking a data structure remotable becomes necessary if their mem-

ory requirements exceed a single server’s capacity. In this section, we evaluate CARDS’s

remoting policies, which are determined dynamically without proling or conservative as-

sumptions, and compare them with existing proling and conservative compilers.

Figures 5.5 to 5.7 compares the remoting policies of CARDS (as discussed in Sec-

tion 5.2) across three application benchmarks. As local memory increases, more data struc-

tures are designated as non-remotable, meaning their memory allocations are pinned to

34https://github.com/WukLab/Mira
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(a) top k = 25% (b) top k = 50%

(c) top k = 75% (d) top k = 100%

Figure 5.5. CARDS remoting policies for analytics benchmark where we increase the
amount of data structures to be localized from left to right, notice that max reach policy
is unaffected even when data structures are localized only in top 25% of functions.

local (non-remotable) memory. These gures show that selectively remoting data struc-

tures can improve application performance by up to ∼ 2×, especially when sufcient local

memory is available.

For the analytics workload, CARDS allocates available local memory by setting

aside 1 GB for remotable memory, while the remaining local memory is used for pinned

memory, if available. CARDS identies 22 disjoint data structures at compile time, each

of which is assigned a dedicated prefetcher and a custom remote policy manager. Since the

sizes of these data structures are not known at compile time, CARDS includes a tunable

parameter, k, that controls the percentage of data structures to be localized.
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(a) top k = 25% (b) top k = 50%

(c) top k = 75% (d) top k = 100%

Figure 5.6. CARDS remoting policies for ftfdapml where we increase the amount of data
structures to be localized from left to right, notice that max reach policy is unaffected
even when data structures are localized only in the top 25% of functions.

When all data structures are localized (k = 100), the policies exhibit similar perfor-

mance, except for the random policy. However, as the number of localized data structures

decreases, the effectiveness of each policy varies. The max reach policy proves to be more

resilient to selective remoting. In scenarios where the application’s local memory exceeds

90%, a linear policy sufces because all data structures can be localized on demand. Unlike

other policies that statically assign certain data structures to be remotable, the linear policy

makes decisions at runtime.

In Figure 5.6 we allocate 1 GB of remotable memory for the ftfdapml benchmark,

with the remainder designated for pinned (non-remotable) memory. CARDS identies 15
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(a) top k = 25% (b) top k = 50%

(c) top k = 75% (d) top k = 100%

Figure 5.7. CARDS remoting policies for BFS where we increase the amount of data
structures to be localized from left to right, notice that the linear policy is unaffected
even when the top 25% data structures are localized.

disjoint data structures at compile time, with certain data structures requiring more mem-

ory than others. The max uses policy performs better when k exceeds 25%. Additionally,

both the linear and max reach policies demonstrate greater tolerance to selection changes,

achieving performance that is approximately ∼4× better than the all-remotable congura-

tion.

In Figure 5.7, the BFS benchmark is allocated 256 MB for remotable memory, with

the rest designated for pinned memory. CARDS identies 19 disjoint data structures, with

varying memory requirements among them. The linear policy consistently outperforms

other policies across different selections of data structures.
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(a) NYC analytics

(b) ftfdapml

(c) BFS

Figure 5.8. CARDS eliminates a signicant number of guards due to its remoting policies
determined at runtime across benchmarks.
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Figure 5.8 illustrates that selectively marking data structures as remotable can sig-

nicantly reduce network and guard overheads. When all data structures are marked as

remotable, approximately 10 billion guard checks are performed across the three bench-

marks, which can become prohibitively expensive when sufcient local memory is avail-

able. Importantly, these policies not only eliminate guard checks but also reduce network

communication for these data structures.

In summary, Figures 5.5 to 5.8 demonstrate that, with the exception of the random

policy, all other policies enhance the efciency of far memory systems compared to the

conservative approach of marking all data structures as remotable candidates in far mem-

ory compilers. When objects are conservatively designated as remotable at compile time,

they can lead to performance overheads in both scenarios: when local memory is limited

and when it is adequate. Specically, if local memory is constrained and all data structures

are marked as remotable, the system faces frequent network requests to retrieve objects.

On the other hand, when local memory is plentiful, the system suffers from the overhead

associated with static guard checks. In both situations, marking all objects as remotable

can result in considerable network and instrumentation overhead in far memory compil-

ers. Therefore, selectively remoting data structures using even simple policies like linear

assignment proves to be more effective than a conservative approach of marking all data

structures as remotable.

5.3.2 Evaluation of CARDS prefetch policy.

CARDS identies disjoint data structures within an application, with each structure

having its own dedicated prefetcher. We assess the advantages of this separation by com-

paring CARDS to the TrackFM compiler. In Figure 5.9, we analyze various data structures

that perform the sum operation (c[i] = a[i] + b[i]). The memory working set size

is set to 7 GB, and we measure the speedup of CARDS relative to TrackFM. Our ndings

show that data structures with induction variables, such as array sums, run efciently om
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Figure 5.9. CARDS speedup compared to using TrackFM for pointer chasing data struc-
tures, as CARDS can identify disjoint data structures which have their own prefetchers,
CARDS outperforms TrackFM consistently.

TrackFM. However, for pointer-chasing benchmarks like C++ vectors and maps, CARDS

consistently outperforms TrackFM. This is due to the fact that TrackFM relies on induction

variables for prefetching, which are not available in pointer-chasing applications.

5.3.3 Benets of CARDS on real world applications.

Figure 5.10 compares the performance of CARDS with prior far memory com-

pilers. We observe that CARDS achieves performance that falls between proling and

non-proling compilers for the analytics benchmark. Notably, CARDS consistently out-

performs TrackFM by up to approximately 2×, especially when more than 50% of the

local memory is available. With 25% of non-remotable memory, CARDS is within 20% of

the performance of Mira (prole-based compiler). However, as the available local mem-

ory increases, Mira surpasses CARDS. We aim to explore improved policies to close this

gap further in future work. For the other benchmarks, CARDS consistently outperforms

TrackFM.

5.4 Discussion and Future Work

We aim to convey the lessons learned, potential future work, and limitations en-
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(a) NYC (b) ftfdapml (c) BFS

Figure 5.10. CARDS performance compared to prior far memory compilers, CARDS is
within 20% of Mira when local memory is less than 25%, and outperforms TrackFM
consistently when more than a few data structures are localized.

countered while developing CARDS.

5.4.1 Lessons.

During our investigation into the selective assignment of remotable data structures,

we observed that our compiler transformations could interfere with existing compiler op-

timization passes, leading to performance degradation, particularly for data structures that

were not instrumented. This observation prompted us to explore loop versioning. By main-

taining both instrumented and uninstrumented versions of the code, existing compiler op-

timizations could enhance the performance of the uninstrumented code. This approach

enabled CARDS to achieve near native performance when sufcient local memory was

available.

5.4.2 Limitations.

External Library Support Currently, CARDS lacks support for external libraries and

necessitates that the entire application, including external library code, be compiled with

CARDS. However, we believe this limitation can be addressed in several ways. One poten-

tial solution is to manage data structures from external libraries through the kernel without
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instrumentation by CARDS. This can be implemented on systems like Atlas [86], which

allow for the coexistence of object-based and kernel-based runtimes, enabling the kernel to

manage data structures from external libraries. Alternatively, similar to SeaDSA [45], we

could provide stub functions for external functions that describe how they modify memory,

facilitating their transformation by CARDS.

Function Versioning While CARDS benets from loop versioning and avoids the over-

heads of static instrumentation, certain code paths may not utilize loops. We envision that

function versioning could address this issue, although it requires careful consideration re-

garding which functions should be versioned to prevent excessive code size expansion.

5.4.3 Additional Policies for Far Memory.

Although we have explored only two policies at the data structure granularity, we

believe the following strategies could also be valuable for far memory systems:

Evacuation Policy CARDS can utilize compiler analysis to approximate the lifetimes

of data structures, allowing for the asynchronous evacuation of dead structures and im-

proving application efciency. Techniques from context-sensitive, liveness-based garbage

collectors [87] can be applied to the data structures managed by CARDS.

Placement of Data Structures Across Memory Pools CARDS can optimize the place-

ment of data structures in various memory pools based on the characteristics of code and

data access patterns that best align with the memory device capabilities. This strategy en-

hances locality and prefetching algorithms by grouping closely related datasets within the

same memory pool.
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Choice of Network Interconnect Per Data Structure Each data structure in CARDS

could utilize different network transport protocols, such as UC, RC, or UDP, tailored to

the characteristics of the data structure. Mira [43] has examined multiple transports at the

cache granularity; it would be interesting to investigate how data structures could benet

from one-sided or two-sided communication in a far memory context.

Data Structure Management by Kernel or Compiler Certain data structures benet

from temporal locality and are best managed by the kernel. In CARDS, it is feasible for the

compiler and the kernel to manage separate data structures, enhancing overall application

performance. Furthermore, individual objects within a data structure could be managed by

either the kernel or the compiler concurrently. Implementing this would require running

CARDS on Atlas [86], which supports such hybrid designs.

5.5 Conclusion

We present CARDS, a prototype compiler-assisted far memory system that auto-

matically transforms data structures into remote data structures. Through experiments, we

have demonstrated that efcient remotable and prefetching policies can be determined dy-

namically, without proling, by integrating runtime and static information at the data struc-

ture level. CARDS outperforms previous non-proling compiler systems by up to ∼2× and

comes within 25% of the performance of proling-based compilers when local memory is

constrained.
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CHAPTER 6

RELATED WORK

I begin by describing related work on OS level disaggregation within single server

in Section 6.1, followed by related work on memory disaggregation in Section 6.2 and

nally describe related work on data structures for far memory in Section 6.3.

6.1 OS-level disaggregation

As far as we are aware, we are the rst to model speedup analytically for multi-OS

environments. We refer readers to Gioiosa et al. for an excellent empirical study of system

call delegation [31]. Our work was inspired by Amdahl’s original formulation of parallel

speedup [33], Gustafson’s renement [34], and Sun and Ni’s extended model for incorpo-

rating memory-bound programs [35]. One might view a multi-OS setup as a general dis-

tributed system, where forwarded system calls are simply treated as RPCs. In its simplest

case, such a system might suitably be modeled using a LogP model [88]. However, models

like LogP primarily relate to the communication/computation ratio, and furthermore do not

consider the asymmetry between execution times and system interfaces in different operat-

ing systems. Our model, in contrast, is designed to capture this asymmetry. As we extend

our speedup model to include concurrently executing SOS and GPOS threads, we intend to

draw on existing models of parallel computation. Applications limited by system call usage

can be viewed through a lens of “operational intensity,” which others have visualized using

rooine models [89, 90]. While rooine models are based on architectural characteristics

rather than properties inherent to the application and system software stack, we believe

they could be adapted to provide insight for multi-OS systems, and we plan to explore this

further in follow-up work.

6.2 Memory disaggregation

Prior work on far memory primarily falls along two lines: software and hardware-
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based. Hardware-based approaches center on the idea of removing the limitation of the

architected page size [71, 1, 91]. On commodity machines, however, such specialized

hardware is not yet an option. Prior work on improving software-based, programmer-

transparent, far memory focuses on overcoming the limitations of the kernel-based ap-

proach, either by using better prefetching strategies [92, 93], by reducing page fault costs

in the kernel [7], or by using high-performance networking [8]. Signicant benets are

available when full programmer transparency is not a requirement, as shown by AIFM [1]

and Carbink, which focuses on fault-tolerant far memory [94].

One way to improve on the kernel-based approach is to leverage a custom OS. Di-

LOS focuses on mitigating software overheads (especially of the paging subsystem) by

building a LibOS specialized for disaggregated memory [13, 40]. DiLOS, which builds on

OSv [95], uses a custom, unied page table that incorporates remote page table entries in

lieu of repurposing the traditional swap cache to track remote page state, thus reducing soft-

ware overheads. This approach can actually outperform AIFM with sufcient prefetching,

demonstrating that in some cases reducing the page fault costs can counteract the negative

effects of I/O amplication. However, even though DiLOS can run unmodied binaries

(through POSIX compatibility), adopting a new OS can be a challenge. TrackFM, in con-

trast, runs on stock Linux without any changes.

Meta’s production-scale far memory framework (TMO) leverages run-time infor-

mation to transparently ofoad memory onto heterogeneous storage, and demonstrates that

far memory pays off at scale [12]. Far memory systems share lineage with a large body

of work on distributed shared memory (DSM), as these systems are similarly constrained

by the architected page size. Thus, there is also work in this domain on avoiding page

fault overheads. For example, Blizzard [96] and Shasta [9] work at sub-page granularity

to mitigate false sharing. User-space approaches to DSM that leverage the compiler em-

ploy optimizations such as aggregation/hoisting of guards to reduce overheads [60, 61, 62].
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However, these systems assume that an entire allocation is localized at once. In our sys-

tem, chunks of a large allocation can be in independent states (local or remote), mak-

ing hoisting optimizations more challenging. Prior approaches also assume that localized

memory will not be evacuated again, which we must handle. Many of the optimizations

applied in DSM systems relate to synchronization overheads and communication avoid-

ance [97, 98, 99, 100], which are not applicable to non-coherent, far memory setups.

TrackFM requires more careful analysis to reducing guard overheads since the same as-

sumptions made for user-space DSM systems do not apply. While unrelated to far memory,

we build on ideas from prior work on using the compiler to replace paging-based address

translation, namely CARAT [101] and CARAT CAKE [102].

6.3 Data structures for far memory

Hardware based approaches such as the work from Aguilera et al. explore data

structures for far memory and introduce new hardware primitives to improve its efciency [81].

Recently, the proposed CXL [103] interconnect provides hardware-based disaggregation at

cache granularity. Similarly, CLIO [91] and KONA [71] introduce new virtual memory

systems, custom network stack, ofoading capabilities, and ne-grained page sizes in the

hardware. Similarly, MIND demonstrates how memory management logic can be placed

in network fabric to support shared memory coherence with performance [104]. Although,

these approaches are promising, they are yet to be available for commercial use. Further-

more, we envision CARDS can be used as an emulator to guide intuition in such systems.

The compiler community has explored logical data structure analysis for SMP-

based hardware. For example, pool allocation for disjoint data structures [82] and SeaDSA [45]

have shown the benets of compiler data structure analysis for improving locality in SMP

systems and also for proving properties in software verication. In CARDS we extend

SeaDSA [45] to detect disjoint data structures at compile time for far memory.
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There is a also lot of work in prefetching in far memory such as Leap [92], Can-

vas [105], and 3PO [93]. These systems use several optimizations to prefetch complex

access patterns and isolate application access patterns at runtime for far memory systems.

However, unlike prior systems, CARDS uses static compiler analysis, which can simplify

prefetching algorithms by guaranteeing isolation among data structures automatically at

compile time. Similarly, compiler prefetching for recursive data structures has been ex-

plored for SMP systems [106, 107]. These compiler optimizations, however, rely on virtual

memory support and do not directly apply to far memory.

Finally, the most related work in terms of far memory compilers is Mira [43], which

requires prole traces to make the right policy decisions, and even to ensure correctness.

CARDS is the rst far memory compiler that shows how policy decisions can be made

dynamically at data structure granularity for far memory architectures.
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CHAPTER 7

CONTRIBUTIONS

Modeling speedup in software disaggregated environments We introduced speedup

models to place bounds on application speedup along with a kernel module called mktrace

to emulate communication overheads in multi-kernel systems. Our tools enable developers

to gain insight whether an application benets from resource disaggregation within a single

server before using such a system, thereby improving developer productivity. This frame-

work was introduced in [46] and we evaluate our tool, models on real OS disaggregated

systems in [37]. More details on our speedup models, emulator can be found in Chap-

ter 3. This work was published in IEEE MASCOTS © 2019 IEEE, and its extension was

published in IEEE TPDS Volume 33, Issue 6, © 2021 IEEE.

TrackFM - Far out compiler support for a far memory world We introduce TrackFM

a novel far memory compiler, which provides performance of state-of-the-art library based

approaches with full compatibility like the kernel based approaches. This framework was

introduced in [42]. TrackFM improves developer productivity by enabling developers to

run unmodied code in memory disaggregated systems. More details on TrackFM can be

found in Chapter 4. This work was published in ASPLOS 2024. This work is licensed

under a Creative Commons Attribution International 4.0 License.

CARDS - Compiler assisted remote data structures for memory disaggregated servers

Our design and implementation of CARDS will be the rst far memory compiler to enable

policy decisions dynamically with good performance. Our tool will open new areas of

research in far memory such as where to place data structure memory objects based on

memory pool device characteristics dynamically. More details on CARDS can be found in

Chapter 5. We plan to submit this work to OSDI 2025.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Software resource disaggregation has improved exibility in data centers, however

also requires developers to put additional effort to make their applications perform well.

Moreover, there are no guarantees that after switching to a disaggregated system, the appli-

cation will have good performance. My thesis explores automated techniques to improve

developer productivity in disaggregated software stacks.

We rst show that a developer can leverage our speedup models, emulator to gain in-

sight whether an application benets from resource disaggregation within single server [46].

After using our tool, the developer can decide based on our model whether such a system

would be benecial. We also evaluated our speedup models on real multi-OS systems [37].

We then build the TrackFM [42] compiler, which enables a developer to run appli-

cations efciently on memory disaggregated systems without requiring developer changes.

Our tool improves developer productivity in these systems by providing the transparency

of kernel-based approaches and the performance of library-based approaches automatically

using compiler analysis.

Finally, we build CARDS, which further eases developer productivity in memory

disaggregated systems by making far memory policy decisions dynamically at data struc-

ture granularity. CARDS automatically transforms source-level data structures to far mem-

ory data structures to improve application performance by combining static and dynamic

information. Furthermore, CARDS has the potential to simplify prefetching algorithms

by isolating disjoint data structures automatically. Like our prior tools, we plan to make

CARDS freely available online on upon publication. Our tool will enable researchers to

explore new policy decisions at data structure granularity for far memory.

My thesis illustrates how low-level system software components, including compil-
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ers, operating systems, and analytical models, can signicantly enhance developer produc-

tivity in software-based disaggregated systems. By building automated tools, we enable

developers to concentrate on application logic, freeing them from concerns about resource

management and optimization in disaggregated environments.

I now describe the key insights from my thesis. First, our modeling work in Chap-

ter 3 demonstrates that even a simple model can yield valuable insights when a complex

system is broken into performance-critical components, as long as parameters stay within

certain thresholds. For instance, in Chapter 3, the naı̈ve model achieves accuracy simi-

lar to the rened model when forwarding costs are limited to a few microseconds. A key

nding from Chapter 4 is that eliminating instrumentation overhead, rather than merely re-

ducing its cost, is a more effective strategy for amortization. Additionally, as network costs

(e.g., object fetches from a remote server) increase, compiler-based approaches in disag-

gregated environments become more benecial, with instrumentation overhead having less

impact. However, when network costs decrease, instrumentation overhead begins to dom-

inate. Chapter 5 shows that, in this scenario, selectively determining which data structures

are remotable rather than marking all data structures as remotable allows application to

achieve near-native performance.

Although my thesis offers foundational insights, these may not fully apply to man-

aged languages. To address this, we plan to extend CARDS using a modular framework

like MLIR [108], which could enable cross-compiler optimizations for languages like Java.

Additionally, I plan to expand CARDS to emulate prototype hardware, providing an alter-

native to cycle-accurate simulators and offering valuable insights into application behavior

at a higher level. For example, in future CXL-based systems [103], CARDS could optimize

prefetching, caching, and data management for critical data structures, improving perfor-

mance. Inspired by WARDen [76], CARDS could also reduce cache coherence trafc by

identifying frequently accessed data structures. Moreover, integrating transformer-based
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machine learning models within CARDS could simplify automatic cross-platform applica-

tion porting, boosting developer productivity in disaggregated environments.
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